Side Chains Control Dynamics and Self-Sorting in Fluorescent Organic Nanoparticles
ACS NANO 7:1 (2013) 408-416
Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer.
Nano Lett 12:12 (2012) 6293-6301
Abstract:
The ultrafast charge carrier dynamics in GaAs/conjugated polymer type II heterojunctions are investigated using time-resolved photoluminescence spectroscopy at 10 K. By probing the photoluminescence at the band edge of GaAs, we observe strong carrier lifetime enhancement for nanowires blended with semiconducting polymers. The enhancement is found to depend crucially on the ionization potential of the polymers with respect to the Fermi energy level at the surface of the GaAs nanowires. We attribute these effects to electron doping by the polymer which reduces the unsaturated surface-state density in GaAs. We find that when the surface of nanowires is terminated by native oxide, the electron injection across the interface is greatly reduced and such surface doping is absent. Our results suggest that surface engineering via π-conjugated polymers can substantially improve the carrier lifetime in nanowire hybrid heterojunctions with applications in photovoltaics and nanoscale photodetectors.Extreme sensitivity of graphene photoconductivity to environmental gases
(2012)
The origin of an efficiency improving "light soaking" effect in SnO 2 based solid-state dye-sensitized solar cells
Energy and Environmental Science 5:11 (2012) 9566-9573
Abstract:
We observe a strong "light-soaking" effect in SnO 2 based solid-state dye-sensitized solar cells (SDSCs). Both with and without the presence of UV light, the device's short-circuit photocurrent and efficiency increase significantly over 20-30 minutes, until steady-state is achieved. We demonstrate that this is not due to improved charge collection and investigate the charge generation dynamics employing optical-pump terahertz-probe spectroscopy. We observe a monotonic speeding-up of the generation of free-electrons in the SnO 2 conduction band as a function of the light-soaking time. This improved charge generation can be explained by a positive shift in the conduction band edge or, alternatively, an increase in the density of states (DoS) at the energy at which photoinduced electron transfer occurs. To verify this hypothesis, we perform capacitance and charge extraction measurements which indicate a shift in the surface potential of SnO 2 of up to 70 mV with light soaking. The increased availability of states into which electrons can be transferred justifies the increase in both the charge injection rate and ensuing photocurrent. The cause for the shift in surface potential is not clear, but we postulate that it is due to the photoinduced charging of the SnO 2 inducing a rearrangement of charged species or loss of surface oxygen at the dye-sensitized heterojunction. Understanding temporally evolving processes in DSCs is of critical importance for enabling this technology to operate optimally over a prolonged period of time. This work specifically highlights important changes that can occur at the dye-sensitized heterojunction, even without direct light absorption in the metal oxide. © 2012 The Royal Society of Chemistry.Unraveling the function of an MgO interlayer in both electrolyte and solid-state SnO 2 based dye-sensitized solar cells
Journal of Physical Chemistry C 116:43 (2012) 22840-22846