Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Exciton migration in rigid-rod conjugated polymers: an improved Förster model.

J Am Chem Soc 127:13 (2005) 4744-4762

Authors:

Emmanuelle Hennebicq, Geoffrey Pourtois, Gregory D Scholes, Laura M Herz, David M Russell, Carlos Silva, Sepas Setayesh, Andrew C Grimsdale, Klaus Müllen, Jean-Luc Brédas, David Beljonne

Abstract:

The dynamics of interchain and intrachain excitation energy transfer taking place in a polyindenofluorene endcapped with perylene derivatives is explored by means of ultrafast spectroscopy combined with correlated quantum-chemical calculations. The experimental data indicate faster exciton migration in films with respect to solution as a result of the emergence of efficient channels involving hopping between chains in close contact. These findings are supported by theoretical simulations based on an improved Forster model. Within this model, the rates are expressed according to the Fermi golden rule on the basis of (i) electronic couplings that take account of the detailed shape of the excited-state wave functions (through the use of a multicentric monopole expansion) and (ii) spectral overlap factors computed from the simulated acceptor absorption and donor emission spectra with explicit coupling to vibrations (considered within a displaced harmonic oscillator model); inhomogeneity is taken into account by assuming a distribution of chromophores with different conjugation lengths. The calculations predict faster intermolecular energy transfer as a result of larger electronic matrix elements and suggest a two-step mechanism for intrachain energy transfer with exciton hopping along the polymer backbone as the limiting step. Injecting the calculated hopping rates into a set of master equations allows the modeling of the dynamics of exciton transport along the polyindenofluorene chains and yields ensemble-averaged energy-transfer rates in good agreement with experiment.
More details from the publisher
More details

Exciton diffusion dynamics in an organic semiconductor nanostructure

SPRINGER SERIES CHEM 79 (2005) 281-283

Authors:

C Daniel, LM Herz, S Westenhoff, F Makereel, D Beljonne, FJM Hoeben, P Jonkheijm, APHJ Schenning, EW Meijer, C Silva
More details
More details from the publisher

Ultrafast charge photogeneration and exciton regeneration at polymeric semiconductor heterojunctions

SPRINGER SERIES CHEM 79 (2005) 278-280

Authors:

AC Morteani, P Sreearunothai, LM Herz, RH Friend, C Silva
More details
More details from the publisher

Resonance energy transfer dynamics in hydrogen-bonded oligo p-phenylenevinylene nanostructures

SYNTHETIC MET 147:1-3 (2004) 29-35

Authors:

C Daniel, LM Herz, D Beljonne, FJM Hoeben, P Jonkheijm, APHJ Schenning, EW Meijer, RT Phillips, C Silva

Abstract:

Oligo-p-phenylenevinylene (OPV) materials monofunctionalised with ureido-s-triazine form chiral, helical stacks in dodecane solution. Here, we investigate resonance energy transfer dynamics in supramolecular stacks of OPVs consisting of three phenyl rings (MOPV3) doped with similar oligomers containing four phenyl rings (MOPV4). Broad spectral overlap between the MOPV3 fluorophores and MOPV4 chromophores results in efficient energy transfer from MOPV3 to MOPV4. We observe resonance energy transfer following two distinct regimes. The first is evident by growth of MOPV4 photoluminescence on a timescale of similar to50 ps, mediated by rapid exciton diffusion in MOPV3 within the stack. In the second regime, dynamics of localised excitons on nanosecond timescales are dominated by direct resonance energy transfer to MOPV4 chromophores. Global analysis of the photoluminescence decay of MOPV3 in blends with varying MOPV4 composition on times greater than or similar to2 ns is consistent with quasi-one-dimensional resonance energy transfer with Forster radius of 8 nm. (C) 2004 Elsevier B.V. All rights reserved.
More details from the publisher

Towards supramolecular electronics

SYNTHETIC MET 147:1-3 (2004) 43-48

Authors:

APHJ Schenning, P Jonkheijm, FJM Hoeben, J van Herrikhuyzen, SCJ Meskers, EW Meijer, LM Herz, C Daniel, C Silva, RT Phillips, RH Friend, D Beljonne, A Miura, S De Feyter, M Zdanowska, H Uji-i, FC De Schryver, Z Chen, F Wurthner, M Mas-Torrent, D den Boer, M Durkut, P Hadley

Abstract:

We have demonstrated that it is possible to program pi-conjugated molecules to self-assemble into cylindrical aggregates in solution. By incorporating energy or electron traps in our stacks, energy and electron transfer processes in these one-dimensional assemblies have been studied in solution. The transfer of the single OPV cylinders from solution to a solid support as isolated objects was only possible when specific concentrations and specific solid supports were used. So far, however, we have not been able to measure any current through our fibers. (C) 2004 Elsevier B.V All rights reserved.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Current page 64
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet