Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Exchange bias in magnetic topological insulator superlattices

Nano Letters American Chemical Society 20:7 (2020) 5315-5322

Authors:

Jieyi Liu, Angadjit Singh, Yu Yang Fredrik Liu, Adrian Ionescu, Barat Achinuq, Crispin HW Barnes, Thorsten Hesjedal

Abstract:

Magnetic doping and proximity coupling can open a band gap in a topological insulator (TI) and give rise to dissipationless quantum conduction phenomena. Here, by combining these two approaches, we demonstrate a novel TI superlattice structure that is alternately doped with transition and rare earth elements. An unexpected exchange bias effect is unambiguously confirmed in the superlattice with a large exchange bias field using magneto-transport and magneto-optical techniques. Further, the Curie temperature of the Cr-doped layers in the superlattice is found to increase by 60 K compared to a Cr-doped single-layer film. This result is supported by density-functional-theory calculations, which indicate the presence of antiferromagnetic ordering in Dy:Bi2Te3 induced by proximity coupling to Cr:Sb2Te3 at the interface. This work provides a new pathway to realizing the quantum anomalous Hall effect at elevated temperatures and axion insulator state at zero magnetic field by interface engineering in TI heterostructures.
More details from the publisher
Details from ORA
More details
More details
More details

Direct observation of the energy gain underpinning ferromagnetic superexchange in the electronic structure of CrGeTe3

Physical Review B: Condensed Matter and Materials Physics American Physical Society 101 (2020) 205125

Authors:

Md Watson, I Markovic, F Mazzola, Akhil Rajan, Ea Morales, Dm Burn, Thorsten Hesjedal, G van der Laan, S Mukherjee, Tk Kim, C Bigi, I Vobornik, Mc Hatnean, G Balakrishnan, Pdc King

Abstract:

We investigate the temperature-dependent electronic structure of the van der Waals ferromagnet, CrGeTe3. Using angle-resolved photoemission spectroscopy, we identify atomic- and orbital-specific band shifts upon cooling through TC. From these, together with x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements, we identify the states created by a covalent bond between the Te 5p and the Cr eg orbitals as the primary driver of the ferromagnetic ordering in this system, while it is the Cr t2g states that carry the majority of the spin moment. The t2g states furthermore exhibit a marked bandwidth increase and a remarkable lifetime enhancement upon entering the ordered phase, pointing to a delicate interplay between localized and itinerant states in this family of layered ferromagnets.
More details from the publisher
Details from ORA

Coherent Transfer of Spin Angular Momentum by Evanescent Spin Waves within Antiferromagnetic NiO

Physical Review Letters American Physical Society 124 (2020) 217201

Authors:

M Dąbrowski, N Takafumi, DM Burn, A Frisk, DG Newman, C Klewe, Q Li, M Yang, P Shafer, E Arenholz, THORSTEN HESJEDAL, G van der Laan, ZQ Qiu, RJ Hicken

Abstract:

Insulating antiferromagnets have recently emerged as efficient and robust conductors of spin current. Element-specific and phase-resolved x-ray ferromagnetic resonance has been used to probe the injection and transmission of ac spin current through thin epitaxial NiO(001) layers. The spin current is found to be mediated by coherent evanescent spin waves of GHz frequency, rather than propagating magnons of THz frequency, paving the way towards coherent control of the phase and amplitude of spin currents within an antiferromagnetic insulator at room temperature.
More details from the publisher
Details from ORA

Magnetic skyrmion interactions in the micromagnetic framework

Physical Review B: Condensed Matter and Materials Physics American Physical Society 101:13 (2020) 134422

Authors:

Richard Brearton, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

Magnetic skyrmions are localized swirls of magnetization with a nontrivial topological winding number. This winding increases their robustness to superparamagnetism and gives rise to a myriad of novel dynamical properties, making them attractive as next-generation information carriers. Recently the equation of motion for a skyrmion was derived using the approach pioneered by Thiele, allowing for macroscopic skyrmion systems to be modeled efficiently. This powerful technique suffers from the prerequisite that one must have a priori knowledge of the functional form of the interaction between a skyrmion and all other magnetic structures in its environment. Here we attempt to alleviate this problem by providing a simple analytic expression that can generate arbitrary repulsive interaction potentials from the micromagnetic Hamiltonian, using it to provide a correction to the interaction between a skyrmion and the boundary of its material. We also discuss a toy model of the radial profile of a skyrmion, which is accurate for a wide range of material parameters.
More details from the publisher
Details from ORA

Element- and Time-Resolved Measurements of Spin Dynamics Using X-ray Detected Ferromagnetic Resonance

Synchrotron Radiation News Informa UK Limited 33:2 (2020) 12-19

Authors:

Christoph Klewe, Qian Li, Mengmeng Yang, Alpha T N’Diaye, David M Burn, Thorsten Hesjedal, Adriana I Figueroa, Chanyong Hwang, Jia Li, Robert J Hicken, Padraic Shafer, Elke Arenholz, Gerrit van der Laan, Ziqiang Qiu
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet