Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

A low-temperature Kerr effect microscope for the simultaneous magneto-optic and magneto-transport study of magnetic topological insulators

Measurement Science and Technology IOP Publishing 30:12 (2019) 125201

Authors:

J Liu, A Singh, J Llandro, Liam Duffy, Stanton, Holmes, MJ Applegate, Phillips, Thorsten Hesjedal, CHW Barnes

Abstract:

Magneto-optical Kerr effect (MOKE) microscopy is a surface-sensitive probe of magnetisation with micron-sized lateral resolution. Here, we present a low-temperature, focused polar MOKE microscope for the simultaneous magnetooptical and magneto-transport measurements, which has a temperature range of 1.6-300 K and is equipped with a magnet capable of delivering a field of up to 9 T. In this microscope, all optical components are integrated in a free-standing probe, allowing for the straightforward incorporation into many non-optical cryostat systems. Two-dimensional magnetisation scans on patterned ferromagnetic [CoFeB/Pt]n films demonstrate a magnetisation sensitivity of 10 µrad (Kerr angle) and a spatial resolution of 2.2 µm. The combination of optical and electrical measurements provides complementary temperature-dependent information, as demonstrated by the study of magnetic topological insulator thin films with out-of-plane magnetic anisotropy. Using this complementary approach, we study the effects of a secondary phase in Cr and V co-doped Sb2Te3 thin films, which show a combination of weak antilocalization and anisotropic magnetoresistance effects above 70 K. Our results highlight the virtue of MOKE and electrical transport to optimise exotic topological magnetic materials, paving the way for energy-efficient spintronic devices.
More details from the publisher
Details from ORA
More details

Magnetic profile of proximity-coupled (Dy,Bi)2Te3/(Cr,Sb)2Te3 topological insulator heterostructures

Physical Review B: Condensed matter and materials physics American Physical Society 100:5 (2019) 054402

Authors:

L Duffy, NJ Steinke, DB Burn, A Frisk, L Lari, B Kuerbanjiang, VK Lazarov, G Van Der Laan, S Langridge, Thorsten Hesjedal

Abstract:

Magnetic topological insulators (TIs) are an ideal playground for the study of novel quantum phenomena building on time-reversal symmetry broken topological surface states. By combining different magnetic TIs in a heterostructure, their magnetic and electronic properties can be precisely tuned. Recently, we have combined high-moment Dy:Bi2Te3with high transition temperature Cr:Sb2Te3 in a superlattice, and found, using x-ray magnetic circular dichroism (XMCD), that long-range magnetic order can be introduced in the Dy:Bi2Te3 layers. Accompanying first-principles calculations indicated that the origin of the long-range magnetic order is a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. However, based on XMCD alone, which is either averaging over the entire thin film stack or is surface sensitive, this coupling scenario could not be fully confirmed. Here we use polarized neutron reflectometry (PNR), which is ideally suited for the detailed study of superlattices, to retrieve the magnetization in a layer- and interface-resolved way. We find that the magnetization is, in contrast to similar recent studies, homogeneous throughout the individual layers, with no apparent interfacial effects. This finding demonstrates that heterostructure engineering is a powerful way of controlling the magnetic properties of entire layers, with the effects of coupling reaching beyond the interface region.

More details from the publisher
Details from ORA
More details

Expanding the Lorentz Concept in magnetism

New Journal of Physics IOP Publishing 21 (2019) 073063

Authors:

GJ Bowden, G Van Der Laan, Thorsten Hesjedal, RJ Hicken

Abstract:

In 1878, the Dutch physicist Hendrik Antoon Lorentz first addressed the calculation of the local electric field at an atomic site in a ferroelectric material, generated by all the other electric dipoles within the sample. This calculation, which applies equally well to ferromagnets, is taught in Universities around the World. Here we demonstrate that the Lorentz concept can be used to speed up calculations of the local dipolar field in square, circular, and elliptical shaped monolayers and thin films, not only at the center of the film, but across the sample. Calculations show that long elliptical and rectangular films should exhibit the narrowest ferromagnetic resonance linewidth. In addition, discrete dipole calculations show that the Lorentz cavity field (u 0M/3) does not hold in tetragonal films. Depending on the ratio (b/a), the local field can be either less/greater than (u 0M/3): an observation that has implications for ferromagnetic resonance. 3D simple cubic (SC) systems are also examined. For example, while most texts discuss the Lorentz cavity field in terms of a Lorentz sphere, the Lorentz cavity field still holds when a Lorentz sphere is replaced by a the Lorentz cube, but only in cubic SC, FCC and BCC systems. Finally, while the primary emphasis is on the discrete dipole-dipole interaction, contact is made with the continuum model. For example, in the continuous SC dipole model, just one monolayer is required to generate the Lorentz cavity field. This is in marked contrast to the discrete dipole model, where a minimum of five adjacent monolayers is required.
More details from the publisher
Details from ORA
More details

Cr2Te3 thin films for integration in magnetic topological insulator heterostructures

Scientific Reports Nature 9 (2019) 10793

Authors:

DM Burn, Liam Duffy, Ryuja Fujita, Shilei Zhang, AI Figueroa, J Herrero-Martin, G Van Der Laan, Thorsten Hesjedal

Abstract:

Chromium telluride compounds are promising ferromagnets for proximity coupling to magnetic topological insulators (MTIs) of the Cr-doped (Bi,Sb)2(Se,Te)3 class of materials as they share the same elements, thus simplifying thin film growth, as well as due to their compatible crystal structure. Recently, it has been demonstrated that high quality (001)-oriented Cr2Te3 thin films with perpendicular magnetic anisotropy can be grown on c-plane sapphire substrate. Here, we present a magnetic, and soft xray absorption spectroscopy study of the chemical and magnetic properties of Cr2Te3 thin films. X-ray magnetic circular dichroism (XMCD) measured at the Cr L2,3 edges gives information about the local electronic and magnetic structure of the Cr ions. We further demonstrate the overgrowth of Cr2Te3(001) thin films by high-quality Crdoped Sb2Te3 films. The magnetic properties of the layers have been characterized and our results provide a starting point for refining the physical models of the complex magnetic ordering in Cr2Te3 thin films, and their integration into advanced MTI heterostructures for quantum device applications.
More details from the publisher
Details from ORA
More details
More details

The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3

Scientific Reports Nature Research 9 (2019) 6147

Authors:

M Wiesner, RH Roberts, J-F Lin, D Akinwande, Thorsten Hesjedal, LB Duffy, S Wang, Y Song, J Jenczyk, S Jurga, B Mroz

Abstract:

A pressing challenge in engineering devices with topological insulators (TIs) is that electron transport is dominated by the bulk conductance, and so dissipationless surface states account for only a small fraction of the conductance. Enhancing the surface-to-volume ratio is a common method to enhance the relative contribution of such states. In thin films with reduced thickness, the confinement results in symmetry-breaking and is critical for the experimental observation of topologically protected surface states. We employ micro-Raman and tip-enhanced Raman spectroscopy to examine three different mechanisms of symmetry breaking in Bi2Te3 TI thin films: surface plasmon generation, charge transfer, and application of a periodic strain potential. These mechanisms are facilitated by semiconducting and insulating substrates that modify the electronic and mechanical conditions at the sample surface and alter the long-range interactions between Bi2Te3 and the substrate. We confirm the symmetry breaking in Bi2Te3 via the emergence of the Raman-forbidden ܣଵ௨ ଶ mode. Our results suggest that topological surface states can exist at the Bi2Te3/substrate interface, which is in a good agreement with previous theoretical results predicting the tunability of the vertical location of helical surface states in TI/substrate heterostructures.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet