Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Topological Magnetism Group
Thorsten.Hesjedal@physics.ox.ac.uk
  • About
  • Publications

Magnetic proximity-coupling to Cr-doped Sb₂Te₃ thin films

Physical Review B: Condensed Matter and Materials Physics American Physical Society 95 (2017) 224422

Authors:

Liam B Duffy, Adriana I Figueroa, Lukasz Gladczuk, Nina-Juliane Steinke, Kurt Kummer, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

Using soft x-ray absorption spectroscopy we determined the chemical and magnetic properties of the magnetic topological insulator (MTI) Cr:Sb2Te3. X-ray magnetic circular dichroism (XMCD) at the Cr L2,3, Te M4,5, and Sb M4,5 edges shows that the Te 5p moment is aligned antiparallel to both the Cr 3d and Sb 5p moments, which is characteristic for carrier-mediated ferromagnetic coupling. Comparison of the Cr L2,3 spectra with multiplet calculations indicates a hybridized Cr state, consistent with the carrier-mediated coupling scenario. We studied the enhancement of the Curie temperature, TC, of the MTI thin film through the magnetic proximity effect. Arrott plots, measured using the Cr L3 XMCD, show a TC ≈ 87 K for the as-cleaved film. After deposition of a thin layer of ferromagnetic Co onto the surface, the TC increases to ∼93 K, while the Co and Cr moments are parallel. This increase in TC is unexpectedly small compared to similar systems reported earlier. The XMCD spectra demonstrate that the Co/MTI interface remains intact, i.e., no reaction between Co and the MTI takes place. Our results are a useful starting point for refining the physical models of Cr-doped Sb2Te3, which is required for making use of them in device applications.
More details from the publisher
Details from ORA
More details

Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3

Nature Communications Springer Nature 8 (2017) 14619

Authors:

SL Zhang, G van der Laan, Thorsten Hesjedal

Abstract:

The mathematical concept of topology has brought about significant advantages that allow for a fundamental understanding of the underlying physics of a system. In magnetism, the topology of spin order manifests itself in the topological winding number which plays a pivotal role for the determination of the emergent properties of a system. However, the direct experimental determination of the topological winding number of a magnetically ordered system remains elusive. Here, we present a direct relationship between the topological winding number of the spin texture and the polarized resonant X-ray scattering process. This relationship provides a one-to-one correspondence between the measured scattering signal and the winding number. We demonstrate that the exact topological quantities of the skyrmion material Cu2OSeO3 can be directly experimentally determined this way. This technique has the potential to be applicable to a wide range of materials, allowing for a direct determination of their topological properties.
More details from the publisher
Details from ORA
More details
More details

Temperature evolution of topological surface states in bismuth selenide thin films studied using terahertz spectroscopy

Proceedings of SPIE SPIE 10103D:Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X (2017)

Authors:

VS Kamboj, A Singh, HE Beere, Thorsten Hesjedal, CHW Barnes, DA Ritchie

Abstract:

We have measured the terahertz (THz) conductance of a 23 quintuple layer thick film of bismuth selenide (Bi2Se3) and found signatures for topological surface states (TSSs) below 50 K. We provide evidence for a topological phase transition as a function of lattice temperature by optical means. In this work, we used THz time-domain spectroscopy (THz-TDS) to measure the optical conductance of Bi2Se3, revealing metallic behavior at temperatures below 50 K. We measure the THz conductance of Bi2Se3 as 10 e2/h at 4 K, indicative of a surface dominated response. Furthermore, the THz conductance spectra reveal characteristic features at ~1.9 THz attributed to the optical phonon mode, which is weakly visible at low temperatures but which becomes more prominent with increasing temperature. These results present a first look at the temperature-dependent behavior of TSSs in Bi2Se3 and the capability to selectively identify and address them using THz spectroscopy.
More details from the publisher
Details from ORA
More details

Correction to Step-Flow Growth of Bi 2 Te 3 Nanobelts

Crystal Growth & Design 17:3 (2017) 1438-1438

Authors:

P Schönherr, T Tilbury, H Wang, AA Haghighirad, V Srot, PA van Aken, T Hesjedal
More details from the publisher
More details

Room-temperature helimagnetism in FeGe thin films

Scientific Reports Nature Publishing Group 7 (2017) 123

Authors:

Shilei Zhang, Ioannis Stasinopoulos, Tom Lancaster, Fan Xiao, Andreas Bauer, Felix Rucker, Alexander A Baker, Adriana I Figueroa, Zaher Salman, Francis L Pratt, Stephen J Blundell, Thomas Prokscha, Andreas Suter, Johannes Waizner, Markus Garst, Dirk Grundler, Gerrit van der Laan, Christian Pfleiderer, Thorsten Hesjedal

Abstract:

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray spectroscopic and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain αintr = 0:0036 ± 0:0003 at 310K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet