Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Step-flow growth of Bi2Te3 nanobelts

Crystal Growth and Design American Chemical Society 16:12 (2016) 6961-6966

Authors:

Piet Schoenherr, Thomas Tilbury, Haobei Wang, Amir A Haghighirad, V Srot, P van Aken, Thorsten Hesjedal

Abstract:

Understanding the growth mechanism of nanostructures is key to tailoring their properties. Many compounds form nanowires following the vapor-liquid-solid (VLS) growth mechanism, and the growth of Bi2Te3 nanobelts was also explained following the VLS route. Here, we present another growth mechanism of Bi2Te3 nano- and sub-micron belts and ribbons. The samples were grown by physical vapor transport from Bi2Te3 precursor using TiO2 nanoparticles as catalyst, and analyzed by scanning electron microscopy and scanning transmission electron microscopy. The growth starts from a Te-rich cluster, and proceeds via a thin, tip-catalyzed primary layer growing in the [110] direction. The primary layer serves as a support for subsequent step-flow growth. The precursor predominantly absorbs on the substrate and reaches the belt by migration from the base to the tip. Terrace edges pose energy barriers that enhance the growth rate of secondary layers compared to the primary layer. Broadening of the sidewalls is commonly observed and leads to triangular voids that can even result in a branching of the growing belts. Step-flow growth of Bi2Te3 sub-micron belts is different from the spiral-like growth mode of Bi2Te3 thin films, and an important step towards the growth of layered topological insulator nanostructures.
More details from the publisher
Details from ORA
More details

Spin pumping in magnetic trilayer structures with an MgO barrier

Scientific Reports Nature Publishing Group 6 (2016) 35582

Authors:

Alexander A Baker, AI Figueroa, D Pingstone, VK Lazarov, G van der Laan, Thorsten Hesjedal

Abstract:

We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, Aex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, tMgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of x-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers.
More details from the publisher
Details from ORA
More details
More details

X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films

Journal of Magnetism and Magnetic Materials Elsevier 422 (2016) 93-99

Authors:

AI Figueroa, Alexander A Baker, SE Harrison, K Kummer, G van der Laan, Thorsten Hesjedal

Abstract:

Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi2Te3 we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in situ cleaved lm in the cleanest possible environment. The Dy M4;5 absorption spectra measured with circularly polarized x-rays are tied using multiplet calculations to obtain the e ective magnetic moment. Arnott-Noakes plots, measured by the Dy M5 XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin lm did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic eld, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.
More details from the publisher
Details from ORA
More details

One-step SnO2 nanotree-growth

Chemistry - A European Journal Wiley 22:39 (2016) 13823-13825

Authors:

Piet Schoenherr, Thorsten Hesjedal

Abstract:

We present a comparison between Au, TiO2, and self-catalysed growth of SnO2 nanostructures using chemical vapour deposition. TiO2 enables growth of a nanonetwork of SnO2, whereas self-catalysed growth results in nanoclusters. Using Au catalyst, single-crystalline SnO2 nanowire trees can be grown in a one-step process. Two types of trees are identified that differ in size, presence of a catalytic tip, and degree of branching. The growth mechanism of these nanotrees is based on branch-splitting and self-seeding by the catalytic tip, facilitating at least three levels of branching, namely trunk, branch, and leaf.
Details from ORA
More details from the publisher
More details
More details

Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

Journal of Magnetism and Magnetic Materials Elsevier 421 (2016) 428-439

Authors:

Alexander A Baker, Marijan Beg, Gregory Ashton, Maximilian Albert, Dmitri Chernyshenko, Weiwei Wang, Shilei Zhang, Marc-Antonio Bisotti, Matteo Franchin, Chun Lian Hu, Robert Stamps, Thorsten Hesjedal, Hans Fangohr

Abstract:

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet