Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Topological Magnetism Group
Thorsten.Hesjedal@physics.ox.ac.uk
  • About
  • Publications

Free-standing millimetre-long Bi2Te3 sub-micron belts catalyzed by TiO2 nanoparticles

Nanoscale Research Letters SpringerOpen 11 (2016) 308

Authors:

Piet Schoenherr, Fengy Zhang, Danny Kojda, R udiger Mitdank, Martin Albrecht, Saskia F Fischer, Thorsten Hesjedal

Abstract:

Physical vapour deposition (PVD) is used to grow millimetre-long Bi2 Te3 sub-micron belts catalysed by TiO2 nanoparticles. The catalytic efficiency of TiO2 nanoparticles for the nanostructure growth is compared with the catalyst-free growth employing scanning electron microscopy. The catalyst-coated and catalyst-free substrates are arranged side-by-side, and overgrown at the same time, to assure identical growth conditions in the PVD furnace. It is found that the catalyst enhances the yield of the belts. Very long belts were achieved with a growth rate of 28 nm/min. A ∼1-mm-long belt with a rectangular cross-section was obtained after 8 h of growth. The thickness and width were determined by atomic force microscopy, and their ratio is ∼1:10. The chemical composition was determined to be stoichiometric Bi2Te3 using energy-dispersive X-ray spectroscopy. Temperature-dependent conductivity measurements show a characteristic increase of the conductivity at low temperatures. The room temperature conductivity of 0.20×1^5 S⋅m^−1 indicates an excellent sample quality.
More details from the publisher
Details from ORA
More details
More details

Multidomain Skyrmion Lattice State in Cu$_2$OSeO$_3$

(2016)

Authors:

SL Zhang, A Bauer, DM Burn, P Milde, E Neuber, LM Eng, H Berger, C Pfleiderer, G van der Laan, T Hesjedal
More details from the publisher

Resonant Elastic X-ray Scattering from the Skyrmion Lattice in Cu$_{2}$OSeO$_{3}$

(2016)

Authors:

SL Zhang, A Bauer, H Berger, C Pfleiderer, G van der Laan, T Hesjedal
More details from the publisher

Resonant elastic x-ray scattering from the skyrmion lattice in Cu₂OSeO₃

Physical Review B - Condensed Matter and Materials Physics American Physical Society 93:21 (2016) 214420

Authors:

Shilei Zhang, Andreas Bauer, Helmuth Berger, Christian Pfleiderer, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

We report the study of the skyrmion state near the surface of Cu₂OSeO₃ using soft resonant elastic x-ray scattering (REXS) at the Cu L₃ edge. Within the lateral sampling area of 200 × 200 µm², we found a long-range-ordered skyrmion lattice phase as well as the formation of skyrmion domains via the multiple splitting of the diffraction spots. In a recent REXS study of the skyrmion phase of Cu₂OSeO₃ [Phys. Rev. Lett. 112, 167202 (2014)], Langner et al. reported a double-splitting which they interpret as arising from the moiré pattern of two superposed skyrmion sublattices, originating from the two inequivalent Cu sites. However, we find no energy splitting of the Cu peak in xray absorption measurements, which is to be expected considering the system in more detail. We show that the experimental data reported by Langner et al. does not support their interpretation and discuss alternative origins of the peak splitting. In particular, we find that for magnetic field directions deviating from the major cubic axes, a multidomain skyrmion lattice state is obtained, which consistently explains the splitting of the magnetic spots into two—and more—peaks.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The Magneto-Hall Difference and the Planar Extraordinary Hall Balance

AIP Advances American Institute of Physics (2016)

Authors:

Thorsten Hesjedal, SL Zhang

Abstract:

The extraordinary Hall balance (EHB) is a general device concept that harnesses the net extraordinary Hall effect (EHE) arising from two independent magnetic layers, which are electrically in parallel. Different EHB behavior can be achieved by tuning the strength and type of interlayer coupling, i.e., ferromagnetic or antiferromagnetic of varying strength, allowing for logic and memory applications. The physics of the EHE in such a multilayered systems, especially the interface-induced effect, will be discussed. A discrepancy between the magnetization and the Hall effect, called the magneto-Hall difference (MHD) is found, which is not expected in conventional EHE systems. By taking advantage of the MHD effect, and by optimizing the materials structure, magnetoresistance ratios in excess of 40,000% can be achieved at room-temperature. We present a new design, the planar EHB, which has the potential to achieve significantly larger magnetoresistance ratios.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet