Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Spin pumping in magnetic trilayer structures with an MgO barrier

Scientific Reports Nature Publishing Group 6 (2016) 35582

Authors:

Alexander A Baker, AI Figueroa, D Pingstone, VK Lazarov, G van der Laan, Thorsten Hesjedal

Abstract:

We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, Aex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, tMgO, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of x-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers.
More details from the publisher
Details from ORA
More details
More details

X-ray magnetic circular dichroism study of Dy-doped Bi2Te3 topological insulator thin films

Journal of Magnetism and Magnetic Materials Elsevier 422 (2016) 93-99

Authors:

AI Figueroa, Alexander A Baker, SE Harrison, K Kummer, G van der Laan, Thorsten Hesjedal

Abstract:

Magnetic doping of topological insulators (TIs) is crucial for unlocking novel quantum phenomena, paving the way for spintronics applications. Recently, we have shown that doping with rare earth ions introduces large magnetic moments and allows for high doping concentrations without the loss of crystal quality, however no long range magnetic order was observed. In Dy-doped Bi2Te3 we found a band gap opening above a critical doping concentration, despite the paramagnetic bulk behavior. Here, we present a surface-sensitive x-ray magnetic circular dichroism (XMCD) study of an in situ cleaved lm in the cleanest possible environment. The Dy M4;5 absorption spectra measured with circularly polarized x-rays are tied using multiplet calculations to obtain the e ective magnetic moment. Arnott-Noakes plots, measured by the Dy M5 XMCD as a function of field at low temperatures, give a negative transition temperature. The evaporation of a ferromagnetic Co thin lm did not introduce ferromagnetic ordering of the Dy dopants either; instead a lowering of the transition temperature was observed, pointing towards an antiferromagnetic ordering scenario. This result shows that there is a competition between the magnetic exchange interaction and the Zeeman interaction. The latter favors the Co and Dy magnetic moments to be both aligned along the direction of the applied magnetic eld, while the exchange interaction is minimized if the Dy and Co atoms are antiferromagnetically coupled, as in zero applied field.
More details from the publisher
Details from ORA
More details

One-step SnO2 nanotree-growth

Chemistry - A European Journal Wiley 22:39 (2016) 13823-13825

Authors:

Piet Schoenherr, Thorsten Hesjedal

Abstract:

We present a comparison between Au, TiO2, and self-catalysed growth of SnO2 nanostructures using chemical vapour deposition. TiO2 enables growth of a nanonetwork of SnO2, whereas self-catalysed growth results in nanoclusters. Using Au catalyst, single-crystalline SnO2 nanowire trees can be grown in a one-step process. Two types of trees are identified that differ in size, presence of a catalytic tip, and degree of branching. The growth mechanism of these nanotrees is based on branch-splitting and self-seeding by the catalytic tip, facilitating at least three levels of branching, namely trunk, branch, and leaf.
Details from ORA
More details from the publisher
More details
More details

Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

Journal of Magnetism and Magnetic Materials Elsevier 421 (2016) 428-439

Authors:

Alexander A Baker, Marijan Beg, Gregory Ashton, Maximilian Albert, Dmitri Chernyshenko, Weiwei Wang, Shilei Zhang, Marc-Antonio Bisotti, Matteo Franchin, Chun Lian Hu, Robert Stamps, Thorsten Hesjedal, Hans Fangohr

Abstract:

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.
More details from the publisher
Details from ORA

Structural, electronic, and magnetic investigation of magnetic ordering in MBE-grown CrxSb2−xTe3 thin films

Europhysics Letters European Physical Society (2016)

Authors:

Liam J Collins-McIntyre, Liam B Duffy, Anoop Singh, Nina-Juliane Steinke, Christy J Kinane, Timothy R Charlton, A Pushp, Andrew J Kellock, Stuart SP Parkin, Stuart N Holmes, Crispin HW Barnes, Gerrit van der Laan, Sean Langridge, Thorsten Hesjedal

Abstract:

We report the structural, electronic, and magnetic study of Cr-doped Sb2Te3 thin films grown by a two-step deposition process using molecular-beam epitaxy (MBE). The samples were investigated using a variety of complementary techniques, namely, x-ray diffraction (XRD), atomic force microscopy, SQUID magnetometry, magneto-transport, and polarized neutron reflectometry (PNR). It is found that the samples retain good crystalline order up to a doping level of x = 0:42 (in CrxSb2 xTe3), above which degradation of the crystal structure is observed by XRD. Fits to the recorded XRD spectra indicate a general reduction in c-axis lattice parameter as a function of doping, consistent with substitutional doping with an ion of smaller ionic radius. The samples show soft ferromagnetic behavior with the easy axis of magnetization being out-of-plane. The saturation magnetization is dependent on the doping level, and reaches from ~2 μB to almost 3 μB per Cr ion. The transition temperature (Tc) depends strongly on the Cr concentration and is found to increase with doping concentration. For the highest achievable doping level for phase-pure films of x = 0:42, a Tc of 125 K was determined. Electric transport measurements find surface-dominated transport below ~10 K. The magnetic properties extracted from anomalous Hall effect data are in excellent agreement with the magnetometry data. PNR studies indicate a uniform magnetization profile throughout the film, with no indication of enhanced magnetic order towards the sample surface.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet