Experimental and density functional study of Mn doped Bi₂Te₃ topological insulator
APL Materials American Institute of Physics 4:12 (2016) 126103-1
Abstract:
We present a nanoscale structural and density functional study of the Mn doped 3D topological insulator Bi2Te3. X-ray absorption near edge structure show that Mn has valency of nominally 2+. Extended x-ray absorption fine structure spectroscopy in combination with electron energy loss spectroscopy (EELS) shows that Mn is a substitutional dopant of Bi and Te and also resides in the van der Waals gap between the quintuple layers of Bi2Te3. Combination of aberration-corrected scanningtransmission electron microscopy and EELS show that Mn substitution of Te occurs in film regions with increased Mn concentration. First-principles calculations show that the Mn dopants favor octahedral sites and are ferromagnetically coupled.Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3
(2016)
Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure
(2016)
Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure
Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)
Abstract:
We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500 A) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature Tc assumes a thickness-independent enhanced value of ≥43 K as compared with that of bulk MnSi, where Tc ≈ 29 K. A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111]-direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi — except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3
Applied Physics Letters American Institute of Physics 109 (2016) 192406