Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Transverse field muon-spin rotation signature of the skyrmion lattice phase in Cu2OSeO3

Physical Review A American Physical Society 91:22 (2015) 224408

Authors:

T Lancaster, RC Williams, IO Thomas, F Xiao, FL Pratt, Stephen J Blundell, Thorsten Hesjedal, SJ Clark, PD Hatton, MC Hatnean, DS Keeble, G Balakrishnan, JC Loudon

Abstract:

We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ>100 ns.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Growth of Bi2Se3 and Bi2Te3 on amorphous fused silica by MBE

physica status solidi (b) 252:6 (2015) 1334-1338

Authors:

LJ Collins-McIntyre, W Wang, B Zhou, Speller, Chen, T Hesjedal

Abstract:

Topological insulator (TI) thin films of Bi2Se3 and Bi2Te3 have been successfully grown on amorphous fused silica (vitreous SiO2) substrates by molecular beam epitaxy. We find that such growth is possible and investigations by X-ray diffraction reveal good crystalline quality with a high degree of order along the caxis. Atomic force microscopy, electron backscatter diffraction and X-ray reflectivity are used to study the surface morphology and structural film parameters. Angle-resolved photoemission spectroscopy studies confirm the existence of a topological surface state. This work shows that TI films can be grown on amorphous substrates, while maintaining the topological surface state despite the lack of in-plane rotational order of the domains. The growth on fused silica presents a promising route to detailed thermoelectric measurements of TI films, free from unwanted thermal, electrical, and piezoelectric influences from the substrate.
More details from the publisher
Details from ORA
More details

Controlled removal of amorphous Se capping layer from a topological insulator

Applied Physics Letters AIP Publishing 105:24 (2014) 241605

Authors:

Kumar Virwani, Sara E Harrison, Aakash Pushp, Teya Topuria, Eugene Delenia, Philip Rice, Andrew Kellock, Liam Collins-McIntyre, James Harris, Thorsten Hesjedal, Stuart Parkin
More details from the publisher

Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

Scientific Reports Nature Publishing Group 4:1 (2014) 7277

Authors:

D Li, Ma, S-G Wang, Roger Ward, Thorsten Hesjedal, X-G Zhang, A Kohn, E Amsellem, G Yang, J Liu, J Jiang, H-X Wei, X Han

Abstract:

Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.
More details from the publisher
Details from ORA
More details
More details

X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi2Se3 thin films

AIP Advances AIP Publishing 4:12 (2014) 127136

Authors:

LJ Collins-McIntyre, MD Watson, AA Baker, SL Zhang, AI Coldea, SE Harrison, A Pushp, AJ Kellock, SSP Parkin, G van der Laan, T Hesjedal
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet