Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Magnetism for Intelligent Devices (MIND)
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Local electronic and structural environment of transition metal doped Bi2Se3 topological insulator thin films

Journal of Physical Chemistry C (2015)

Authors:

AI Figuorea, G van der Laan, Collins-McIntyre, G Cibin, AJ Dent, T Hesjedal

Abstract:

Transition metal (TM) doped topological insulators have been the focus of many recent studies since they exhibit exotic quantum and magneto-electric effects, and offer the prospect of potential applications in spintronic devices. Here we report a systematic study of the local electronic and structural environment using x-ray absorption fine structure (XAFS) in TM (= Cr, Mn, and Fe) doped Bi2Se3 thin films grown by molecular beam epitaxy. Analysis of the TM K-edge XAFS reveals a divalent character for Cr, Mn, and Fe when substituting Bi in the films, despite the trivalent character of the Bi. All dopants occupy octahedral sites in the Bi2Se3 lattice, which agrees with substitutional incorporation onto the Bi sites. With the incorporation of TM dopants a local structural relaxation of the Bi2Se3 lattice is observed, which strengthens the covalent character of the TM–Se bond. The presence of additional phases and interstitial incorporation for the Mn and Fe dopants is also observed, even at low concentrations.

Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

Journal of Magnetism and Magnetic Materials Elsevier 400 (2015) 178-183

Authors:

AI Figueroa, Alexander Baker, Liam Collins-McIntyre, Thorsten Hesjedal, G van der Laan

Abstract:

In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.
More details from the publisher
Details from ORA
More details

Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

AIP Advances AIP Publishing 5:7 (2015) 077117

Authors:

AA Baker, AI Figueroa, G van der Laan, T Hesjedal
More details from the publisher

Study of Dy-doped Bi2Te3: thin film growth and magnetic properties

Journal of Physics Condensed Matter IOP Publishing 27:24 (2015) 245602

Authors:

SE Harrison, LJ Collins-McIntyre, S-L Zhang, AA Baker, AI Figueroa, AJ Kellock, A Pushp, SSP Parkin, JS Harris, G van der Laan, T Hesjedal
More details from the publisher
More details
More details

Transverse field muon-spin rotation signature of the skyrmion-lattice phase in Cu2OSeO3

Phys Rev B. Solid State 91 (2015) 224408

Authors:

T Lancaster, RC Williams, IO Thomas, F Xiao, FL Pratt, SJ Blundell, JC Loudon, T Hesjedal, SJ Clark, PD Hatton, M Ciomaga Hatnean, DS Keeble, G Balakrishnan

Abstract:

We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ>100 ns.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet