Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
  • Topological Magnetism Group
Thorsten.Hesjedal@physics.ox.ac.uk
  • About
  • Publications

Structural properties and growth mechanism of Cd3As2 nanowires

Applied Physics Letters AIP Publishing 106:1 (2015) 013115

Authors:

P Schönherr, T Hesjedal
More details from the publisher
More details

Magnetization dynamics in an exchange-coupled NiFe/CoFe bilayer studied by x-ray detected ferromagnetic resonance

New Journal of Physics IOP Publishing 17:1 (2015) 013019

Authors:

GBG Stenning, LR Shelford, SA Cavill, F Hoffmann, M Haertinger, T Hesjedal, G Woltersdorf, GJ Bowden, SA Gregory, CH Back, PAJ de Groot, G van der Laan
More details from the publisher

Transverse field muon-spin rotation signature of the skyrmion lattice phase in Cu2OSeO3

Physical Review A American Physical Society 91:22 (2015) 224408

Authors:

T Lancaster, RC Williams, IO Thomas, F Xiao, FL Pratt, Stephen J Blundell, Thorsten Hesjedal, SJ Clark, PD Hatton, MC Hatnean, DS Keeble, G Balakrishnan, JC Loudon

Abstract:

We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ>100 ns.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Growth of Bi2Se3 and Bi2Te3 on amorphous fused silica by MBE

physica status solidi (b) 252:6 (2015) 1334-1338

Authors:

LJ Collins-McIntyre, W Wang, B Zhou, Speller, Chen, T Hesjedal

Abstract:

Topological insulator (TI) thin films of Bi2Se3 and Bi2Te3 have been successfully grown on amorphous fused silica (vitreous SiO2) substrates by molecular beam epitaxy. We find that such growth is possible and investigations by X-ray diffraction reveal good crystalline quality with a high degree of order along the caxis. Atomic force microscopy, electron backscatter diffraction and X-ray reflectivity are used to study the surface morphology and structural film parameters. Angle-resolved photoemission spectroscopy studies confirm the existence of a topological surface state. This work shows that TI films can be grown on amorphous substrates, while maintaining the topological surface state despite the lack of in-plane rotational order of the domains. The growth on fused silica presents a promising route to detailed thermoelectric measurements of TI films, free from unwanted thermal, electrical, and piezoelectric influences from the substrate.
More details from the publisher
Details from ORA
More details

Controlled removal of amorphous Se capping layer from a topological insulator

Applied Physics Letters AIP Publishing 105:24 (2014) 241605

Authors:

Kumar Virwani, Sara E Harrison, Aakash Pushp, Teya Topuria, Eugene Delenia, Philip Rice, Andrew Kellock, Liam Collins-McIntyre, James Harris, Thorsten Hesjedal, Stuart Parkin
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet