Metal halide perovskite-containing multijunction photovoltaics
Abstract:
Thanks to their superior bandgap tunability and high absorption coefficient, metal halide perovskites demonstrate high potential for fabricating multijunction photovoltaics capable of achieving power conversion efficiencies surpassing the radiative efficiency limit of single-junction solar cells[1],[2]. One of the key challenges currently facing all-perovskite multijunction photovoltaics is the low quality of the narrow bandgap (~1.25 eV) mixed tin-lead perovskite films used as the rear absorber. At this conference, we will present our recent investigations on the mixed tin−lead perovskites covering the control of the Sn(II) oxidation[3], interface carrier extraction[4], and in-situ surface reaction[5], as well as the understanding of the solution chemistry and resultant crystallization[6], aiming to generate a global picture toward the comprehensive understanding of this material and its photovoltaic devices. As a result, we have obtained efficiencies of over 23.9% for the single-junction tin−lead perovskite devices, with an open circuit voltage of up to 0.91 V. Building on optimizations of neat lead perovskites, we then showcase the successful integration of these improved mixed tin-lead perovskites into double-, triple-, and quadruple-junction tandem solar cells, achieving efficiencies exceeding 29%, 28%, and 27%, respectively. In addition, we will propose promising strategies for enhancing the light and temperature stability of the involved perovskite subcells, aiming to improve the reliability of efficient all-perovskite multijunction photovoltaics. Furthermore, we will also share insights and recent progress achieved in perovskite-on-silicon multijunction cells.Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics
Unveiling the importance of nondominant facets in (111)-dominated perovskite films
Abstract:
While (111)-dominated perovskite films hold the potential for high-stability solar cells, most studies have primarily focused on modulating the (111) facets, overlooking the distribution and formation mechanism of the nondominant (100) facets. In this study, we delve into the (111) orientation via solvent regulation and investigate the evolution of facet distribution using various diffraction techniques. The findings reveal that simply stacking (111) facets does not inherently enhance solar cells. Instead, the distribution of nondominant (100) facets in (111)-dominated films significantly influences both photoelectric property and stability. These observations highlight the critical need to manage the interplay between dominant and nondominant facets. The study further offers strategies for addressing facet heterogeneity to achieve a uniform facet distribution. This research provides a comprehensive framework for understanding (111)-dominated perovskites and offers valuable guidance for designing high-performance perovskite solar cells.Resilience pathways for halide perovskite photovoltaics under temperature cycling
Abstract:
Metal-halide perovskite solar cells have achieved power conversion efficiencies comparable to those of silicon photovoltaic (PV) devices, approaching 27% for single-junction devices. The durability of the devices, however, lags far behind their performance. Their practical implementation implies the subjection of the material and devices to temperature cycles of varying intensity, driven by diurnal cycles or geographical characteristics. Thus, it is vital to develop devices that are resilient to temperature cycling. This Perspective analyses the behaviour of perovskite devices under temperature cycling. We discuss the crystallographic structural evolution of the perovskite layer, reactions and/or interactions among stacked layers, PV properties and photocatalysed thermal reactions. We highlight effective strategies for improving stability under temperature cycling, such as enhancing material crystallinity or relieving interlayer thermal stress using buffer layers. Additionally, we outline existing standards and protocols for temperature cycling testing and we propose a unified approach that could facilitate valuable cross-study comparisons among scientific and industrial research laboratories. Finally, we share our outlook on strategies to develop perovskite PV devices with exceptional real-world operating stability.In-situ molecular compensation in wide-bandgap perovskite for efficient all-perovskite tandem solar cells
Abstract:
Substantial VOC loss and halide segregation in wide-bandgap (WBG) perovskite sub-cells pose significant challenges for advancing all-perovskite tandem solar cells (APTSCs). Regarding this, one of the most impactful developments is the application of hole-selective self-assembled monolayers (SAMs), leading to the advancement in APTSC technology. However, SAMs with poor polar-solvent resistance would be inevitably delaminated from substrates during perovskite precursor coating, remaining great challenge in achieving a complete SAMs coverage with derivatization issues, e.g. defective perovskite and considerable interface energy loss. Here, we introduced an in-situ molecular compensation strategy to address the inherent flaw of SAMs within WBG perovskites via incorporating 5-ammonium valeric acid iodide (5-AVAI). The larger-dipole 5-AVAI spontaneously accumulates toward the buried interface to compensate the SAMs-deficient sites when depositing WBG perovskite, effectively minimizing interfacial energy loss. Simultaneously, amphoteric 5-AVAI with amino and carboxyl groups can compensate the defects at grain boundaries for solid passivation. Consequently, a champion efficiency of 20.23% with a record VOC of 1.376 V was realized on WBG devices, enabling an efficiency of 28.9% for the APTSCs. Encouragingly, the tandems showed good operational stability and retained 87.3% of their efficiency after 800 hours of tracking.