Exposing binding-favourable facets of perovskites for tandem solar cells
Energy & Environmental Science Royal Society of Chemistry 18 (2025) 7680-7694
Abstract:
Improved understanding of heterojunction interfaces has enabled multijunction photovoltaic devices to achieve power conversion efficiencies that exceed the detailed-balance limit for single-junctions. For wide-bandgap perovskites, however, the pronounced energy loss across the heterojunctions of the active and charge transport layers impedes multijunction devices from reaching their full efficiency potential. Here we find that for polycrystalline perovskite films with mixed-halide compositions, the crystal termination—a factor influencing the reactivity and density of surface sites—plays a crucial role in interfacial passivation for wide-bandgap perovskites. We demonstrate that by templating the growth of polycrystalline perovskite films toward a preferred (100) facet, we can reduce the density of deep-level trap states and enhance the binding of modification ligands. This leads to a much-improved heterojunction interface, resulting in open-circuit voltages of 1.38 V for 1.77-eV single-junction perovskite solar cells. In addition, monolithic all-perovskite double-junction solar cells achieve open-circuit voltage values of up to 2.22 V, with maximum power point tracking efficiencies reaching 28.6% and 27.7% at 0.25 and 1.0 cm2 cell areas, respectively, along with improved operational and thermal stability at 85 °C. This work provides universally applicable insights into the crystalline facet-favourable surface modification of perovskite films, advancing their performance in optoelectronic applications.Metal halide perovskite-containing multijunction photovoltaics
Institute of Electrical and Electronics Engineers (IEEE) 00 (2025) 1228-1228
Abstract:
Thanks to their superior bandgap tunability and high absorption coefficient, metal halide perovskites demonstrate high potential for fabricating multijunction photovoltaics capable of achieving power conversion efficiencies surpassing the radiative efficiency limit of single-junction solar cells[1],[2]. One of the key challenges currently facing all-perovskite multijunction photovoltaics is the low quality of the narrow bandgap (~1.25 eV) mixed tin-lead perovskite films used as the rear absorber. At this conference, we will present our recent investigations on the mixed tin−lead perovskites covering the control of the Sn(II) oxidation[3], interface carrier extraction[4], and in-situ surface reaction[5], as well as the understanding of the solution chemistry and resultant crystallization[6], aiming to generate a global picture toward the comprehensive understanding of this material and its photovoltaic devices. As a result, we have obtained efficiencies of over 23.9% for the single-junction tin−lead perovskite devices, with an open circuit voltage of up to 0.91 V. Building on optimizations of neat lead perovskites, we then showcase the successful integration of these improved mixed tin-lead perovskites into double-, triple-, and quadruple-junction tandem solar cells, achieving efficiencies exceeding 29%, 28%, and 27%, respectively. In addition, we will propose promising strategies for enhancing the light and temperature stability of the involved perovskite subcells, aiming to improve the reliability of efficient all-perovskite multijunction photovoltaics. Furthermore, we will also share insights and recent progress achieved in perovskite-on-silicon multijunction cells.Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics
Nature Communications Springer Science and Business Media LLC 16:1 (2025) 4917
Unveiling the importance of nondominant facets in (111)-dominated perovskite films
ACS Applied Materials and Interfaces American Chemical Society 17:15 (2025) 22715-22726
Abstract:
While (111)-dominated perovskite films hold the potential for high-stability solar cells, most studies have primarily focused on modulating the (111) facets, overlooking the distribution and formation mechanism of the nondominant (100) facets. In this study, we delve into the (111) orientation via solvent regulation and investigate the evolution of facet distribution using various diffraction techniques. The findings reveal that simply stacking (111) facets does not inherently enhance solar cells. Instead, the distribution of nondominant (100) facets in (111)-dominated films significantly influences both photoelectric property and stability. These observations highlight the critical need to manage the interplay between dominant and nondominant facets. The study further offers strategies for addressing facet heterogeneity to achieve a uniform facet distribution. This research provides a comprehensive framework for understanding (111)-dominated perovskites and offers valuable guidance for designing high-performance perovskite solar cells.Resilience pathways for halide perovskite photovoltaics under temperature cycling
Nature Reviews Materials Springer Nature 10:7 (2025) 536-549