Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Uranus’ Stratospheric HCl Upper Limit from Herschel/SPIRE* * Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

Research Notes of the AAS American Astronomical Society 4:10 (2020) 191

Authors:

NA Teanby, PGJ Irwin
More details from the publisher

How Does Thermal Scattering Shape the Infrared Spectra of Cloudy Exoplanets? A Theoretical Framework and Consequences for Atmospheric Retrievals in the JWST era

(2020)

Authors:

Jake Taylor, Vivien Parmentier, Michael R Line, Elspeth KH Lee, Patrick GJ Irwin, Suzanne Aigrain
More details from the publisher

C2N2 vertical profile in Titan’s stratosphere

Astronomical Journal IOP Publishing 160:4 (2020) 178

Authors:

Melody Sylvestre, Nicholas Teanby, M Dobrijevic, Jason Sharkey, Patrick Irwin

Abstract:

In this paper, we present the first measurements of the vertical distribution of cyanogen (${{\rm{C}}}_{2}{{\rm{N}}}_{2}$) in Titan's lower atmosphere at different latitudes and seasons, using Cassini's Composite Infrared Spectrometer far-infrared data. We also study the vertical distribution of three other minor species detected in our data: methylacetylene (${{\rm{C}}}_{3}{{\rm{H}}}_{4}$), diacetylene (${{\rm{C}}}_{4}{{\rm{H}}}_{2}$), and ${{\rm{H}}}_{2}{\rm{O}}$, in order to compare them to ${{\rm{C}}}_{2}{{\rm{N}}}_{2}$, but also to get an overview of their seasonal and meridional variations in Titan's lower stratosphere from 85 km to 225 km. We measured an average volume mixing ratio of ${{\rm{C}}}_{2}{{\rm{N}}}_{2}$ of $6.2\pm 0.8\times {10}^{-11}$ at 125 km at the equator, but poles exhibit a strong enrichment in ${{\rm{C}}}_{2}{{\rm{N}}}_{2}$ (up to a factor 100 compared to the equator), greater than what was measured for ${{\rm{C}}}_{3}{{\rm{H}}}_{4}$ or ${{\rm{C}}}_{4}{{\rm{H}}}_{2}$. Measuring ${{\rm{C}}}_{2}{{\rm{N}}}_{2}$ profiles provides constraints on the processes controlling its distribution, such as bombardment by Galactic Cosmic Rays which seem to have a smaller influence on ${{\rm{C}}}_{2}{{\rm{N}}}_{2}$ than predicted by photochemical models.
More details from the publisher
Details from ORA
More details

Neptune’s HCl upper limit from Herschel/HIFI

Icarus Elsevier 354 (2020) 114045

Authors:

Nicholas Teanby, Ben Gould, PGJ Irwin

Abstract:

Here we search for hydrogen chloride (HCl) in Neptune’s stratosphere using observations of the 1876.22 GHz J=3–2 transition from the Heterodyne Instrument for the Far-Infrared (HIFI) on Herschel. Observations comprise a 7.2 hr disc-averaged integration, originally designed to investigate stratospheric methane. Significant HCl emission was not detected. Instead, we determine upper limits using step-type abundance profiles, defined by zero deep abundance and uniform volume mixing ratio for pressures less than a transition pressure (assumed to be 0.1 or 1 mbar). These profiles are a reasonable first-order approximation for an externally sourced species; at higher pressures HCl is expected to be removed by aerosol scavenging and reactions with ammonia. The 3 upper limits are 0.70 parts per billion (ppb) for a 0.1 mbar transition pressure and 0.076 ppb for a 1 mbar transition pressure. These upper limits are the most stringent to date and are consistent with current estimates of interplanetary dust particle flux and the hypothesis that Neptune experienced a large comet impact in the past 1000 years.
More details from the publisher
Details from ORA
More details

Potential vorticity structure of Titan’s polar vortices from Cassini CIRS observations

Icarus Elsevier BV (2020) 114030

Authors:

Jason Sharkey, Nicholas A Teanby, Melody Sylvestre, Dann M Mitchell, William JM Seviour, Conor A Nixon, Patrick GJ Irwin
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet