Mapping Vinyl Cyanide and Other Nitriles in Titan's Atmosphere Using ALMA
D/H Ratios on Saturn and Jupiter from Cassini CIRS
Abstract:
We present new measurements of the deuterium abundance on Jupiter and Saturn, showing evidence that Saturn's atmosphere contains less deuterium than Jupiter's. We analyzed far-infrared spectra from the Cassini Composite Infrared Spectrometer to measure the abundance of HD on both giant planets. Our estimate of the Jovian D/H = (2.95 ± 0.55) × 10−5 is in agreement with previous measurements by ISO/SWS: (2.25 ± 0.35) × 10−5, and the Galileo probe: (2.6 ± 0.7) × 10−5. In contrast, our estimate of the Saturn value of (2.10 ± 0.13) × 10−5 is somewhat lower than on Jupiter (by a factor of ), contrary to model predictions of a higher ratio: Saturn/Jupiter = 1.05–1.20. The Saturn D/H value is consistent with estimates for hydrogen in the protosolar nebula (2.1 ± 0.5) ×10−5, but its apparent divergence from the Jovian value suggests that our understanding of planetary formation and evolution is incomplete, which is in agreement with previous work.
Seasonal evolution of $\mathrm{C_2N_2}$, $\mathrm{C_3H_4}$, and $\mathrm{C_4H_2}$ abundances in Titan's lower stratosphere
Jupiter's North Equatorial Belt expansion and thermal wave activity ahead of Juno's arrival
Abstract:
The dark colors of Jupiter's North Equatorial Belt (NEB, 7–17°N) appeared to expand northward into the neighboring zone in 2015, consistent with a 3–5 year cycle. Inversions of thermal-IR imaging from the Very Large Telescope revealed a moderate warming and reduction of aerosol opacity at the cloud tops at 17–20°N, suggesting subsidence and drying in the expanded sector. Two new thermal waves were identified during this period: (i) an upper tropospheric thermal wave (wave number 16–17, amplitude 2.5 K at 170 mbar) in the mid-NEB that was anticorrelated with haze reflectivity; and (ii) a stratospheric wave (wave number 13–14, amplitude 7.3 K at 5 mbar) at 20–30°N. Both were quasi-stationary, confined to regions of eastward zonal flow, and are morphologically similar to waves observed during previous expansion events.