Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003-2007

Icarus 231 (2014) 146-167

Authors:

LN Fletcher, I de Pater, GS Orton, HB Hammel, ML Sitko, PGJ Irwin

Abstract:

Imaging and spectroscopy of Neptune's thermal infrared emission from Keck/LWS (2003), Gemini-N/MICHELLE (2005); VLT/VISIR (2006) and Gemini-S/TReCS (2007) is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236°) and southern summer solstice (2005, Ls=270°). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is <±5K at 1mbar and <±3K at 0.1mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two (from 500 to 1200ppb at 1mbar). The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation, although the underlying cause of the variable ethane emission remains unidentified. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane), with no large seasonal hemispheric asymmetries evident at solstice. At low and mid-latitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50μm mapping of tropospheric temperatures and para-hydrogen disequilibrium (a tracer for vertical motions) suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes have occurred at high southern latitudes, where zonal temperatures retrieved from 2003 images suggest a polar enhancement of 7-8K above the tropopause, and an increase of 5-6K throughout the 70-90°S region between 0.1 and 200mbar. Such a large perturbation, if present in 1989, would have been detectable by Voyager/IRIS in a single scan despite its long-wavelength sensitivity, and we conclude that Neptune's south polar cyclonic vortex increased in strength significantly from Voyager to solstice. © 2013 Elsevier Inc.
More details from the publisher
More details

Erratum: Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b (ApJ (2013) 778 (97))

Astrophysical Journal 780:2 (2014)

Authors:

JM Lee, K Heng, PGJ Irwin
More details from the publisher
More details

Analysis of Rosetta/VIRTIS spectra of earth using observations from ENVISAT/AATSR, TERRA/MODIS and ENVISAT/SCIAMACHY, and radiative-transfer simulations

Planetary and Space Science 90 (2014) 37-59

Authors:

J Hurley, PGJ Irwin, A Adriani, M Moriconi, F Oliva, F Capaccioni, A Smith, G Filacchione, F Tosi, G Thomas

Abstract:

Rosetta, the Solar System cornerstone mission of ESA's Horizon 2000 programme, consists of an orbiter and a lander, and is due to arrive at the comet 67P/Churyumov-Gerasimenko in May 2014. Following its 2004 launch, Rosetta carried out a series of planetary fly-bys and gravitational assists. On these close fly-bys of the Earth, measurements were taken by the Visible Infrared Thermal Imaging Spectrometer (VIRTIS). Analysis of these spectra and comparison with spectra acquired by Earth-observing satellites can support the verification of the inflight calibration of Rosetta/VIRTIS. In this paper, measurements taken by VIRTIS in November 2009 are compared with suitable coincident data from Earth-observing instruments (ESA-ENVISAT/AATSR and SCIAMACHY, and EOS-TERRA/MODIS). Radiative transfer simulations using NEMESIS (Irwin et al.; 2008) are fit to the fly-by data taken by VIRTIS, using representative atmospheric and surface parameters. VIRTIS measurements correlate 90% with AATSR's, 85-94% with MODIS, and 82-88% with SCIAMACHYs. The VIRTIS spectra are reproducible in the 1-5 μm region, except in the 1.4 μm deep water vapour spectral absorption band in the near-infrared in cases in which the radiance is very low (cloud-free topographies), where VIRTIS consistently registers more radiance than do MODIS and SCIAMACHY. Over these cloud-free regions, VIRTIS registers radiances a factor of 3-10 larger than SCIAMACHY and of 3-8 greater than MODIS. It is speculated that this discrepancy could be due to a spectral light leak originating from reflections from the order-sorting filters above the detector around 1.4 μm. © 2013 Elsevier Ltd.
More details from the publisher

Line-by-line analysis of Neptune's near-IR spectrum observed with Gemini/NIFS and VLT/CRIRES

Icarus 227 (2014) 37-48

Authors:

PGJ Irwin, E Lellouch, C de Bergh, R Courtin, B Bézard, LN Fletcher, GS Orton, NA Teanby, SB Calcutt, D Tice, J Hurley, GR Davis

Abstract:

New line data describing the absorption of CH4 and CH3D from 1.26 to 1.71μm (WKMC-80K, Campargue, A., Wang, L., Mondelain, D., Kassi, S., Bézard, B., Lellouch, E., Coustenis, A., de Bergh, C., Hirtzig, M., Drossart, P. [2012]. Icarus 219, 110-128) have been applied to the analysis of Gemini-N/NIFS observations of Neptune made in 2009 and VLT/CRIRES observations made in 2010. The new line data are found to greatly improve the fit to the observed spectra and present a considerable advance over previous methane datasets. The improved fits lead to an empirically derived wavelength-dependent correction to the scattering properties of the main observable cloud deck at 2-3bars that is very similar to the correction determined for Uranus' lower cloud using the same line dataset by Irwin et al. (Irwin, P.G.J., de Bergh, C., Courtin, R., Bézard, B., Teanby, N.A., Davis, G.R., Fletcher, L.N., Orton, G.S., Calcutt, S.B., Tice, D., Hurley, J. [2012]. Icarus 220, 369-382). By varying the abundance of CH3D in our simulations, analysis of the Gemini/NIFS observations leads to a new determination of the CH3D/CH4 ratio for Neptune of 3.0-0.9+1.0×10-4, which is smaller than previous determinations, but is identical (to within error) with the CH3D/CH4 ratio of 2.9-0.5+0.9×10-4 derived by a similar analysis of Gemini/NIFS observations of Uranus made in the same year. Thus it appears that the atmospheres of Uranus and Neptune have an almost identical D/H ratio, which suggests that the icy planetisimals forming these planets came from the same source reservoir, or a reservoir that was well-mixed at the locations of ice giant formation, assuming complete mixing between the atmosphere and interior of both these planets. VLT/CRIRES observations of Neptune have also been analysed with the WKMC-80K methane line database, yielding very good fits, with little evidence for missing absorption features. The CRIRES spectra indicate that the mole fraction of CO at the 2-3bar level must be substantially less than its estimated stratospheric value of 1×10-6, which suggests that the predominant source of CO in Neptune's atmosphere is external, through the influx of micrometeorites and comets, although these data cannot rule out an additional internal source. © 2013 Elsevier Inc.
More details from the publisher
More details

Analysis of Rosetta/VIRTIS spectra of earth using observations from ENVISAT/AATSR, TERRA/MODIS and ENVISAT/SCIAMACHY, and radiative-transfer simulations

Planetary and Space Science Elsevier BV 90 (2014) 37-59

Authors:

J Hurley, PGJ Irwin, A Adriani, M Moriconi, F Oliva, F Capaccioni, A Smith, G Filacchione, F Tosi, G Thomas
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • Current page 58
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet