An external origin for carbon monoxide on Uranus from Herschel/SPIRE?
Astrophysical Journal Letters 775:2 (2013)
Abstract:
Previous studies have demonstrated an external source of CO on Jupiter, Saturn, and Neptune. However, it has not been possible to demonstrate this on Uranus because of its low CO abundance, low upper-tropospheric temperatures, and low stratospheric thermal gradient, which make detection very challenging. Here we use 17 Herschel/SPIRE observation sequences spanning 3 yr (2009-2012), which cover 14.6-51.8 cm-1 with a combined integration time of 5 hr. These spectra were originally taken for routine calibration purposes, so were corrected for continuum offsets prior to analysis. The final stacked spectra had an extremely low noise level of 10-50 pW cm-2 sr-1/ cm-1. Despite this, CO was not observed, but we were able to obtain stringent 3σ upper limits at the 0.1-0.2 bar level of 2.1 ppb for a uniform profile, and 9.4 ppb for a stratosphere-only profile - an order of magnitude improvement over previous studies. Comparison with observed CO fluorescence by Encrenaz et al. suggests the majority of Uranus' stratospheric CO has an external origin. It thus appears that external supply of oxygen species - via comets, micrometeorites, or dust - is an important process on all giant planets in our solar system. © 2013. The American Astronomical Society. All rights reserved.The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?
(2013)
Detection of Propene in Titan's Stratosphere
(2013)
Seasonal variations of temperature, acetylene and ethane in Saturn's atmosphere from 2005 to 2010, as observed by Cassini-CIRS
Icarus 225:1 (2013) 257-271
Abstract:
Acetylene (C2H2) and ethane (C2H6) are by-products of complex photochemistry in the stratosphere of Saturn. Both hydrocarbons are important to the thermal balance of Saturn's stratosphere and serve as tracers of vertical motion in the lower stratosphere. Earlier studies of Saturn's hydrocarbons using Cassini-CIRS observations have provided only a snapshot of their behaviour. Following the vernal equinox in August 2009, Saturn's northern and southern hemispheres have entered spring and autumn, respectively, however the response of Saturn's hydrocarbons to this seasonal shift remains to be determined. In this paper, we investigate how the thermal structure and concentrations of acetylene and ethane have evolved with the changing season on Saturn. We retrieve the vertical temperature profiles and acetylene and ethane volume mixing ratios from δν̃=15.5cm-1 Cassini-CIRS observations. In comparing 2005 (solar longitude, Ls~308°), 2009 (Ls~3°) and 2010 (Ls~15°) results, we observe the disappearance of Saturn's warm southern polar hood with cooling of up to 17.1K±0.8K at 1.1mbar at high-southern latitudes. Comparison of the derived temperature trend in this region with a radiative climate model (Section 4 of Fletcher et al., 2010 and Greathouse et al. (2013, in preparation)) indicates that this cooling is radiative although dynamical changes in this region cannot be ruled out. We observe a21±12% enrichment of acetylene and a 29±11% enrichment of ethane at 25°N from 2005 to 2009, suggesting downwelling at this latitude. At 15°S, both acetylene and ethane exhibit a decrease in concentration of 6±11% and 17±9% from 2005 to 2010, respectively, which suggests upwelling at this latitude (though a statistically significant change is only exhibited by ethane). These implied vertical motions at 15°S and 25°N are consistent with a recently-developed global circulation model of Saturn's tropopause and stratosphere(Friedson and Moses, 2012), which predicts this pattern of upwelling and downwelling as a result of a seasonally-reversing Hadley circulation. Ethane exhibits a general enrichment at mid-northern latitudes from 2005 to 2009. As the northern hemisphere approaches summer solstice in 2017, this feature might indicate an onset of a meridional enrichment of ethane, as has been observed in the southern hemisphere during/after southern summer solstice. © 2013 Elsevier Inc.Constraining the atmosphere of GJ 1214b using an optimal estimation technique
(2013)