Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Radiative transfer processes in outer planetary atmospheres

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 215-262
More details

Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity

ICARUS 199:2 (2009) 429-441

Authors:

RM Nelson, LW Kamp, DL Matson, PGJ Irwin, KH Baines, MD Boryta, FE Leader, R Jaumann, WD Smythe, C Sotin, RN Clark, DP Cruikshank, P Drossart, JC Pearl, BW Hapke, J Lunine, M Combes, G Bellucci, J-P Bibring, F Capaccioni, P Cerroni, A Coradini, V Formisano, G Filacchione, RY Langevin, TB McCord, V Mennella, PD Nicholson, B Sicardy
More details from the publisher

Sources of remotely sensed data on the giant planets

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 263-+
More details

Vertical structure of temperature, composition, and clouds

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 73-+
More details

Intense polar temperature inversion in the middle atmosphere on Mars

Nature Geoscience 1:11 (2008) 745-749

Authors:

DJ McCleese, JT Schofield, FW Taylor, WA Abdou, O Aharonson, D Banfield, SB Calcutt, NG Heavens, PGJ Irwin, DM Kass, A Kleinböhl, WG Lawson, CB Leovy, SR Lewis, DA Paige, PL Read, MI Richardson, N Teanby, RW Zurek

Abstract:

Current understanding of weather, climate and global atmospheric circulation on Mars is incomplete, in particular at altitudes above about 30 km. General circulation models for Mars are similar to those developed for weather and climate forecasting on Earth and require more martian observations to allow testing and model improvements. However, the available measurements of martian atmospheric temperatures, winds, water vapour and airborne dust are generally restricted to the region close to the surface and lack the vertical resolution and global coverage that is necessary to shed light on the dynamics of Mars middle atmosphere at altitudes between 30 and 80 km (ref.7). Here we report high-resolution observations from the Mars Climate Sounder instrument on the Mars Reconnaissance Orbiter. These observations show an intense warming of the middle atmosphere over the south polar region in winter that is at least 10-20 K warmer than predicted by current model simulations. To explain this finding, we suggest that the atmospheric downwelling circulation over the pole, which is part of the equator-to-pole Hadley circulation, may be as much as 50 more vigorous than expected, with consequences for the cycles of water, dust and CO"2 that regulate the present-day climate on Mars. © 2008 Macmillan Publishers Limited.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet