Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations

Journal of Geophysical Research: Planets 114:5 (2009)

Authors:

CCC Tsang, PGJ Irwin, CF Wilson, FW Taylor, C Lee, R De Kok, P Drossart, G Piccioni, B Bezard, S Calcutt

Abstract:

[1] We present nightside observations of tropospheric carbon monoxide in the southern hemisphere near the 35 km height level, the first from Venus Express/Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M-IR. VIRTIS-M data from 2.18 to 2.50 μm, with a spectral resolution of 10 nm, were used in the analysis. Spectra were binned, with widths ranging from 5 to 30 spatial pixels, to increase the signal-to-noise ratio, while at the same time reducing the total number of retrievals required for complete spatial coverage. We calculate the mean abundance for carbon monoxide at the equator to be 23 ± 2 ppm. The CO concentration increases toward the poles, peaking at a latitude of approximately 60°S, with a mean value of 32 ± 2 ppm. This 40% equator-to-pole increase is consistent with the values found by Collard et al. (1993) from Galileo/NIMS observations. Observations suggest an overturning in this CO gradient past 60°S, declining to abundances seen in the midlatitudes. Zonal variability in this peak value has also been measured, varying on the order of 10% (∼3 ppm) at different longitudes on a latitude circle. The zonal variability of the CO abundance has possible implications for the lifetime of CO and its dynamics in the troposphere. This work has definitively established a distribution of tropospheric CO, which is consistent with a Hadley cell circulation, and placed limits on the latitudinal extent of the cell. Copyright 2008 by the American Geophysical Union.
More details from the publisher
More details

Dynamical processes

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 141-+
More details

Evolution processes in outer planet atmospheres

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 59-71
More details

Formation of the giant planets

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 19-+
More details

Future of giant planet observations

Chapter in GIANT PLANETS OF OUR SOLAR SYSTEM: ATMOSPHERES, COMPOSITION, AND STRUCTURE, SECOND EDITION, (2009) 337-366
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • Current page 75
  • Page 76
  • Page 77
  • Page 78
  • Page 79
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet