Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Mapping Titan's HCN in the far infra-red: implications for photochemistry.

Faraday Discuss 147 (2010) 51-64

Authors:

NA Teanby, PGJ Irwin, R de Kok, CA Nixon

Abstract:

Observations of Titan's far infra-red spectra by the Cassini orbiter's Composite InfraRed Spectrometer have been used to determine the latitude distribution of HCN at 1 mbar by fitting the HCN and CO rotational lines in the 18-60 cm(-1) (160-550 microm) spectral range. Results confirm the north polar HCN enrichment previously observed using mid-IR data and support the conclusion that Titan's nitrile species are significantly more enriched than hydrocarbons species with similar predicted photochemical lifetimes. This suggests Titan's photochemical cycle includes an additional sink for nitrogen bearing species. The abundance of CO was also determined, and had a mean value of 55 +/- 6 ppm at 20 mbar. However, it was not possible to reliably determine the CO latitude variation due to unconstrained temperatures in the north polar lower stratosphere.
More details from the publisher
More details

Martian atmosphere as observed by VIRTIS-M on Rosetta spacecraft

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 115 (2010) ARTN E04004

Authors:

A Coradini, D Grassi, F Capaccioni, G Filacchione, F Tosi, E Ammannito, MC De Sanctis, V Formisano, P Wolkenberg, G Rinaldi, G Arnold, MA Barucci, G Bellucci, J Benkhoff, JP Bibring, A Blanco, D Bockelee-Morvan, MT Capria, R Carlson, U Carsenty, P Cerroni, L Colangeli, M Combes, M Combi, J Crovisier, P Drossart, T Encrenaz, S Erard, C Federico, U Fink, S Fonti, W-H Ip, PGJ Irwin, R Jaumann, E Kuehrt, Y Langevin, G Magni, T McCord, V Mennella, S Mottola, G Neukum, V Orofino, P Palumbo, G Piccioni, H Rauer, B Schmitt, D Tiphene, FW Taylor, GP Tozzi
More details from the publisher

SEASONAL CHANGES IN TITAN'S POLAR TRACE GAS ABUNDANCE OBSERVED BY CASSINI

ASTROPHYSICAL JOURNAL LETTERS 724:1 (2010) L84-L89

Authors:

NA Teanby, PGJ Irwin, R de Kok, CA Nixon
More details from the publisher

Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 115 (2010) ARTN E12016

Authors:

DJ McCleese, NG Heavens, JT Schofield, WA Abdou, JL Bandfield, SB Calcutt, PGJ Irwin, DM Kass, A Kleinbohl, SR Lewis, DA Paige, PL Read, MI Richardson, JH Shirley, FW Taylor, N Teanby, RW Zurek
More details from the publisher

Upper limits for undetected trace species in the stratosphere of Titan.

Faraday Discuss 147 (2010) 65-81

Authors:

Conor A Nixon, Richard K Achterberg, Nicholas A Teanby, Patrick GJ Irwin, Jean-Marie Flaud, Isabelle Kleiner, Alix Dehayem-Kamadjeu, Linda R Brown, Robert L Sams, Bruno Bézard, Athena Coustenis, Todd M Ansty, Andrei Mamoutkine, Sandrine Vinatier, Gordon L Bjoraker, Donald E Jennings, Paul N Romani, F Michael Flasar

Abstract:

In this paper we describe the first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which has been observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25 degrees S and 75 degrees N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • Current page 75
  • Page 76
  • Page 77
  • Page 78
  • Page 79
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet