Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Retrievals of Jovian tropospheric phosphine from Cassini/CIRS

Icarus 172 (2004) 37-49

Authors:

PG Irwin, P. Parrish, T. Fouchet, S. B. Calcutt
More details from the publisher

Search for spatial variation in the jovian 15N/14N ratio from Cassini/CIRS observations

Icarus 172 (2004) 50-58

Authors:

SB Calcutt, Fouchet, Irwin, Parrish
More details from the publisher
More details

Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.

Science 305:5690 (2004) 1582-1586

Authors:

VG Kunde, FM Flasar, DE Jennings, B Bézard, DF Strobel, BJ Conrath, CA Nixon, GL Bjoraker, PN Romani, RK Achterberg, AA Simon-Miller, P Irwin, JC Brasunas, JC Pearl, MD Smith, GS Orton, PJ Gierasch, LJ Spilker, RC Carlson, AA Mamoutkine, SB Calcutt, PL Read, FW Taylor, T Fouchet, P Parrish, A Barucci, R Courtin, A Coustenis, D Gautier, E Lellouch, A Marten, R Prangé, Y Biraud, C Ferrari, TC Owen, MM Abbas, RE Samuelson, F Raulin, P Ade, CJ Césarsky, KU Grossman, A Coradini

Abstract:

The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.
More details from the publisher
More details

Upper limits on hydrogen halides in Jupiter from Cassini/CIRS observations

Icarus 170:1 (2004) 237-241

Authors:

T Fouchet, G Orton, PGJ Irwin, SB Calcutt, CA Nixon

Abstract:

We have determined the following upper limits for the mole fraction of hydrogen halides in Jupiter's atmosphere from Cassini/CIRS observations: [HF] <2.7×10-11, [HCl] <2.3×10-9, [HBr]<1.0×10-9, [HI] <7.6×10-9. These limits are smaller than solar composition for HF and HCl, and support the halogens' condensation in ammonium salts predicted by thermochemical models for the upper jovian troposphere. © 2004 Published by Elsevier Inc.
More details from the publisher
More details

An intense stratospheric jet on Jupiter

Nature 427 (2004) 132-135

Authors:

SB Calcutt, Achtergerg, Flasar, Kunde
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 88
  • Page 89
  • Page 90
  • Page 91
  • Current page 92
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet