Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

The Stripe 82 1–2 GHz Very Large Array Snapshot Survey: host galaxy properties and accretion rates of radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 358-370

Authors:

IH Whittam, M Prescott, K McAlpine, Matthew Jarvis, I Heywood

Abstract:

A sample of 1161 radio galaxies with 0.01 <z< 0.7 and 1021 < L1.4 GHz/W ˜Hz−1 < 1027 is selected from the Stripe 82 1–2 GHz Karl G. Jansky Very Large Array Snapshot Survey, which covers 100 sq. deg. and has a 1σ noise level of 88 μJy beam−1. Optical spectra are used to classify these sources as high excitation and low excitation radio galaxies (HERGs and LERGs), resulting in 60 HERGs, 149 LERGs, and 600 ‘probable LERGs’. The host galaxies of the LERGs have older stellar populations than those of the HERGs, in agreement with previous results in the literature. We find that the HERGs tend to have higher Eddington-scaled accretion rates than the LERGs but that there is some overlap between the two distributions. We show that the properties of the host galaxies vary continuously with accretion rate, with the most slowly accreting sources having the oldest stellar populations, consistent with the idea that these sources lack a supply of cold gas. We find that 84 per cent of our sample releases more than 10 per cent of their accretion power in their jets, showing that mechanical active galactic nucleus (AGN) feedback is significantly underestimated in many hydrodynamical simulations. There is a scatter of ∼2 dex in the fraction of the accreted AGN power deposited back into the interstellar medium in mechanical form, showing that the assumption in many simulations that there is a direct scaling between accretion rate and radio-mode feedback does not necessarily hold. We also find that mechanical feedback is significant for many of the HERGs in our sample as well as the LERGs.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, design and target catalogue

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 768-799

Authors:

LJM Davies, ASG Robotham, SP Driver, CP Lagos, L Cortese, E Mannering, C Foster, C Lidman, A Hashemizadeh, S Koushan, S O’Toole, IK Baldry, M Bilicki, J Bland-Hawthorn, MN Bremer, MJI Brown, JJ Bryant, B Catinella, SM Croom, MW Grootes, BW Holwerda, Matthew J Jarvis, N Maddox, M Meyer, AJ Moffett

Abstract:

The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ∼60 000 galaxies to Y < 21.2mag, over ∼6 deg2 in threewell-studied deep extragalactic fields (CosmicOrigins Survey field, COSMOS; Extended Chandra Deep Field South, ECDFS; and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS – all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of near-infrared colours and has been validated by visual inspection. To maximize our observing efficiency for faint targets, we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night’s observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.
More details from the publisher
Details from ORA
More details

HST grism confirmation of 16 structures at 1.4 < z < 2.8 from the Clusters Around Radio-Loud AGN (CARLA) survey

Astrophysical Journal Institute of Physics 859:1 (2018) 38

Authors:

G Noirot, D Stern, S Mei, D Wylezalek, EA Cooke, C De Breuck, A Galametz, NA Hatch, J Vernet, M Brodwin, P Eisenhardt, AH Gonzalez, Matthew Jarvis, A Rettura, N Seymour

Abstract:

We report spectroscopic results from our 40-orbit Hubble Space Telescope slitless grism spectroscopy program observing the 20 densest Clusters Around Radio-Loud AGN (CARLA) candidate galaxy clusters at 1.4 1.4.
More details from the publisher
Details from ORA
More details

The VANDELS ESO public spectroscopic survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 479:1 (2018) 25-42

Authors:

RJ McLure, L Pentericci, A Cimatti, JS Dunlop, D Elbaz, A Fontana, K Nandra, R Amorin, M Bolzonella, A Bongiorno, AC Carnall, M Castellano, M Cirasuolo, O Cucciati, F Cullen, S De Barros, SL Finkelstein, F Fontanot, P Franzetti, M Fumana, A Gargiulo, B Garilli, L Guaita, WG Hartley, A Iovino

Abstract:

VANDELS is a uniquely deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO'sVery Large Telescope (VLT). The survey has obtained ultradeep optical (0.48 < ? < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0≤z≤ 7.0, over a total area of ≃0.2 deg2centred on the CANDELS Ultra Deep Survey and Chandra Deep Field South fields. Based on accurate photometric redshift pre-selection, 85 per cent of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high-signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities, and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-tonoise ratio (20>tint>80 h), theVANDELS survey targeted: (a) bright star-forming galaxies at 2.4≤z≤5.5, (b) massive quiescent galaxies at 1.0≤z≤2.5, (c) fainter star-forming galaxies at 3.0≤z≤7.0, and (d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multiwavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper, we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design, and target selection.
More details from the publisher
Details from ORA
More details

Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments

Proceedings of the International Astronomical Union Cambridge University Press 12:S333 (2018) 183-190

Authors:

Matthew J Jarvis, Rebecca AA Bowler, PW Hatfield

Abstract:

Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet