Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Black hole – Galaxy correlations in SIMBA

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:4 (2019) 5764-5780

Authors:

N Thomas, R Dave, D Angles-Alcazar, Matthew Jarvis

Abstract:

We examine the co-evolution of galaxies and supermassive black holes in the simba cosmological hydrodynamic simulation. simba grows black holes via gravitational torque-limited accretion from cold gas and Bondi accretion from hot gas, while feedback from black holes is modelled in radiative and jet modes depending on the Eddington ratio (fEdd). simba shows generally good agreement with local studies of black hole properties, such as the black hole mass-stellar velocity dispersion (MBH-σ) relation, the black hole accretion rate versus star formation rate (BHAR-SFR), and the black hole mass function. MBH-σ evolves such that galaxies at a given MBH have higher σ at higher redshift, consistent with no evolution in MBH-M∗. For MBH ≤ 108 M⊙, fEdd is anticorrelated with MBH since the BHAR is approximately independent of MBH, while at higher masses fEdd-MBH flattens and has a larger scatter. BHAR versus SFR is invariant with redshift, but fEdd drops steadily with time at a given MBH, such that all but the most massive black holes are accreting in a radiatively efficient mode at z ≥ 2. The black hole mass function amplitude decreases with redshift and is locally dominated by quiescent galaxies for MBH > 108 M⊙, but for z≥ 1 star-forming galaxies dominate at all MBH. The z = 0 fEdd distribution is roughly lognormal with a peak at fEdd ≤ 0.01 as observed, shifting to higher fEdd at higher redshifts. Finally, we study the dependence of black hole properties with H i content and find that the correlation between gas content and SFR is modulated by black hole properties, such that higher SFR galaxies at a given gas content have smaller black holes with higher fEdd.
More details from the publisher
Details from ORA
More details

Radio source extraction with ProFound

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:3 (2019) 3971-3989

Authors:

CL Hale, ASG Robotham, LJM Davies, Matthew Jarvis, SP Driver, I Heywood

Abstract:

In the current era of radio astronomy, continuum surveys observe a multitude of objects with complex morphologies and sizes, and are not limited to observing point sources. Typical radio source extraction software generates catalogues by using Gaussian components to form a model of the emission. This may not be well suited to complicated jet structures and extended emission, particularly in the era of interferometers with a high density of short baselines, which are sensitive to extended emission. In this paper, we investigate how the optically motivated source detection package ProFound (Robotham et al. 2018) may be used to model radio emission of both complicated and point-like radio sources. We use a combination of observations and simulations to investigate how ProFound compares to other source extractor packages used for radio surveys. We find that ProFound can accurately recover both the flux densities of simulated Gaussian sources as well as extended radio galaxies. ProFound can create models that trace the complicated nature of these extended galaxies, which we show is not necessarily the case with other source extraction software. Our work suggests that our knowledge of the emission from extended radio objects may be both over or under-estimated using traditional software. We suggest that ProFound offers a useful alternative to the fitting of Gaussian components for generating catalogues from current and future radio surveys. Furthermore, ProFound's multiwavelength capabilities will be useful in investigating radio sources in combination with multiwavelength data.
More details from the publisher
Details from ORA
More details

The energetics of starburst-driven outflows at z ∼ 1 from KMOS

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:1 (2019) 381-393

Authors:

AM Swinbank, CM Harrison, AL Tiley, HL Johnson, I Smail, JP Stott, PN Best, RG Bower, Martin Bureau, A Bunker, M Cirasuolo, M Jarvis, GE Magdis, RM Sharples, D Sobral

Abstract:

We present an analysis of the gas outflow energetics from KMOS observations of ∼ 529 main-sequence star-forming galaxies at z ∼ 1 using broad, underlying H α and forbidden lines of [N II] and [S II]. Based on the stacked spectra for a sample with median star-formation rates and stellar masses of SFR = 7 M⊙   yr−1 and M⋆ = (1.0 ± 0.1) × 1010 M⊙, respectively, we derive a typical mass outflow rate of M˙wind = 1–4 M⊙ yr−1 and a mass loading of M˙wind / SFR = 0.2–0.4. By comparing the kinetic energy in the wind with the energy released by supernovae, we estimate a coupling efficiency between the star formation and wind energetics of ϵ ∼  0.03. The mass loading of the wind does not show a strong trend with star-formation rate over the range ∼ 2–20 M⊙ yr−1, although we identify a trend with stellar mass such that dM / dt / SFR ∝ M0.26±0.07⋆⁠. Finally, the line width of the broad H α increases with disc circular velocity with a sub-linear scaling relation FWHMbroad ∝ v0.21 ± 0.05. As a result of this behaviour, in the lowest mass galaxies (M⋆ ≲ 1010 M⊙), a significant fraction of the outflowing gas should have sufficient velocity to escape the gravitational potential of the halo whilst in the highest mass galaxies (M⋆ ≳ 1010 M⊙) most of the gas will be retained, flowing back on to the galaxy disc at later times.
More details from the publisher
Details from ORA
More details
Details from ArXiV

LOFAR observations of the XMM-LSS field

Astronomy and Astrophysics EDP Sciences 622 (2019) A4

Authors:

Catherine L Hale, W Williams, Matthew Jarvis, MJ Hardcastle, Leah K Morabito, TW Shimwell, C Tasse, PN Best, JJ Harwood, Ian Heywood, I Prandoni, HJA Röttgering, J Sabater, DJB Smith, RJV Weeren

Abstract:

We present observations of the XMM Large-Scale Structure (XMM-LSS) field observed with the LOw Frequency ARray (LOFAR) at 120–168 MHz. Centred at a J2000 declination of −4.5°, this is a challenging field to observe with LOFAR because of its low elevation with respect to the array. The low elevation of this field reduces the effective collecting area of the telescope, thereby reducing sensitivity. This low elevation also causes the primary beam to be elongated in the north-south direction, which can introduce side lobes in the synthesised beam in this direction. However the XMM-LSS field is a key field to study because of the wealth of ancillary information, encompassing most of the electromagnetic spectrum. The field was observed for a total of 12 h from three four-hour LOFAR tracks using the Dutch array. The final image presented encompasses ∼27 deg2, which is the region of the observations with a >50% primary beam response. Once combined, the observations reach a central rms of 280 μJy beam−1 at 144 MHz and have an angular resolution of 7.5 × 8.5″. We present our catalogue of detected sources and investigate how our observations compare to previous radio observations. This includes investigating the flux scale calibration of these observations compared to previous measurements, the implied spectral indices of the sources, the observed source counts and corrections to obtain the true source counts, and finally the clustering of the observed radio sources.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

LoTSS DR1: Double-double radio galaxies in the HETDEX field

Astronomy and Astrophysics EDP Sciences 622 (2019) A13

Authors:

VH Mahatma, MJ Hardcastle, WL Williams, PN Best, JH Croston, K Duncan, B Mingo, R Morganti, M Brienza, RK Cochrane, G Gürkan, JJ Harwood, Matthew J Jarvis, M Jamrozy, N Jurlin, Leah K Morabito, HJA Röttgering, J Sabater, TW Shimwell, DJB Smith, A Shulevski, C Tasse

Abstract:

Context. Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. Aims. The sensitivity and field of view of LOFAR enables the observation of DDRGs on a population basis rather than single-source observations. Using statistical comparisons with a control sample of RLAGN, we may obtain insights into the nature of DDRGs in the context of their host galaxies, where physical differences in their hosts compared to RLAGN as a population may allow us to infer the conditions that drive restarting jets. Methods. We utilised the LOFAR Two-Metre Sky Survey (LoTSS) DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the Karl. G. Jansky Very Large Array (VLA) at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN, matching the luminosity distribution of the DDRG sample, and compared the optical and infrared magnitudes and colours of their host galaxies. Results. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and “normal” RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet