Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Professor Achillefs Kapanidis

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Gene machines
Achillefs.Kapanidis@physics.ox.ac.uk
Telephone: 01865 (2)72226
Biochemistry Building
groups.physics.ox.ac.uk/genemachines/group
  • About
  • Publications

RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons

Nucleic Acids Research Oxford University Press 51:15 (2023) 8085-8101

Authors:

Jun Fan, Hafez El Sayyed, Oliver J Pambos, Mathew Stracy, Jingwen Kyropoulos, Achillefs N Kapanidis

Abstract:

Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1–2 rrn operons.
More details from the publisher
Details from ORA
More details
More details

Cover Feature: Bleaching‐resistant, Near‐continuous Single‐molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding (ChemPhysChem 12/2023)

ChemPhysChem Wiley 24:12 (2023)

Authors:

Mirjam Kümmerlin, Abhishek Mazumder, Achillefs N Kapanidis
More details from the publisher

Bleaching-resistant,near-continuous single-molecule fluorescence and fret based on fluorogenic and transient DNA binding

ChemPhysChem Wiley 24:12 (2023) e202300175

Authors:

Mirjam Kümmerlin, Abhishek Mazumder, Achillefs N Kapanidis

Abstract:

Graphical Abstract
A general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule is presented. Using two orthogonal sequences, the authors show that their method is adaptable to Förster resonance energy transfer (FRET) and can be used to continuously study the conformational transitions of dynamic structures for extended periods (>1 hr).

Abstract
Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.

More details from the publisher
Details from ORA
More details
More details

Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins

Nature Methods Springer Nature 20:4 (2023) 523-535

Authors:

Ganesh Agam, Christian Gebhardt, Milana Popara, Rebecca Mächtel, Julian Folz, Benjamin Ambrose, Neharika Chamachi, Sang Yoon Chung, Timothy D Craggs, Marijn de Boer, Dina Grohmann, Taekjip Ha, Andreas Hartmann, Jelle Hendrix, Verena Hirschfeld, Christian G Hübner, Thorsten Hugel, Dominik Kammerer, Hyun-Seo Kang, Achillefs N Kapanidis, Georg Krainer, Kevin Kramm, Edward A Lemke, Eitan Lerner, Emmanuel Margeat, Kirsten Martens, Jens Michaelis, Jaba Mitra, Gabriel G Moya Muñoz, Robert B Quast, Nicole C Robb, Michael Sattler, Michael Schlierf, Jonathan Schneider, Tim Schröder, Anna Sefer, Piau Siong Tan, Johann Thurn, Philip Tinnefeld, John van Noort, Shimon Weiss, Nicolas Wendler, Niels Zijlstra, Anders Barth, Claus AM Seidel, Don C Lamb, Thorben Cordes
More details from the publisher
More details

A new twist on PIFE: photoisomerisation-related fluorescence enhancement

(2023)

Authors:

Evelyn Ploetz, Benjamin Ambrose, Anders Barth, Richard Börner, Felix Erichson, Achillefs N Kapanidis, Harold D Kim, Marcia Levitus, Timothy M Lohman, Abhishek Mazumder, David S Rueda, Fabio D Steffen, Thorben Cordes, Steven W Magennis, Eitan Lerner
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet