RNA polymerase clamp conformational dynamics: long-lived states and modulation by crowding, cations, and nonspecific DNA binding
Nucleic Acids Research Oxford University Press 49:5 (2021) 2790-2802
Abstract:
The RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Förster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ∼ 0.3–0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes > 1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation.Amplification-Free Detection of Viruses in Minutes using Single-Particle Imaging and Machine Learning
Biophysical Journal Elsevier 120:3 (2021) 195a
Single-Molecule Fret Analysis of Key Protein Conformational Changes During Promoter Escape by RNA Polymerase
Biophysical Journal Elsevier 120:3 (2021) 109a
Transcription initiation at a consensus bacterial promoter proceeds via a “bind-unwind-load-and-lock” mechanism
(2021)
Abstract:
Transcription initiation starts with unwinding of promoter DNA by RNA polymerase (RNAP) to form a catalytically competent RNAP-promoter complex (RP O ). Despite extensive study, the mechanism of promoter unwinding has remained unclear, in part due to the transient nature of intermediates on path to RPo. Here, using single-molecule unwinding-induced fluorescence enhancement to monitor promoter unwinding, and single-molecule fluorescence resonance energy transfer to monitor RNAP clamp conformation, we analyze RPo formation at a consensus bacterial core promoter. We find that the RNAP clamp is closed during promoter binding, remains closed during promoter unwinding, and then closes further, locking the unwound DNA in the RNAP active-centre cleft. Our work defines a new, “bind-unwind-load-and-lock,” model for the series of conformational changes occurring during promoter unwinding at a consensus bacterial promoter and provides the tools needed to examine the process in other organisms and at other promoters.Significance statement
Transcription initiation, the first step and most important step in gene expression for all organisms, involves unwinding of promoter DNA by RNA polymerase (RNAP) to form an open complex (RPo); this step also underpins transcriptional regulation and serves as an antibiotic target. Despite decades of research, the mechanism of promoter DNA unwinding has remained unresolved. Here, we solve this puzzle by using single-molecule fluorescence to directly monitor conformational changes in the promoter DNA and RNAP in real time during RPo formation. We show that RPo forms via a “ bind-unwind-load-and-lock ” mechanism, where the promoter unwinds outside the RNAP cleft, the unwound template DNA loads into the cleft, and RNAP “locks” the template DNA in place by closing the RNAP clamp module.Viral detection and identification in 20 minutes by rapid single-particle fluorescence in-situ hybridization of viral RNA
(2021)