Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Professor Achillefs Kapanidis

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Gene machines
Achillefs.Kapanidis@physics.ox.ac.uk
Telephone: 01865 (2)72226
Biochemistry Building
groups.physics.ox.ac.uk/genemachines/group
  • About
  • Publications

DNA monofunctionalization of quantum dots.

Chembiochem 10:11 (2009) 1781-1783

Authors:

Helen MJ Carstairs, Kostas Lymperopoulos, Achillefs N Kapanidis, Jonathan Bath, Andrew J Turberfield
More details from the publisher
More details

A facile method for reversibly linking a recombinant protein to DNA.

Chembiochem 10:9 (2009) 1551-1557

Authors:

Russell P Goodman, Christoph M Erben, Jonathan Malo, Wei M Ho, Mireya L McKee, Achillefs N Kapanidis, Andrew J Turberfield

Abstract:

We present a facile method for linking recombinant proteins to DNA. It is based on the nickel-mediated interaction between a hexahistidine tag (His(6)-tag) and DNA functionalized with three nitrilotriacetic acid (NTA) groups. The resulting DNA-protein linkage is site-specific. It can be broken quickly and controllably by the addition of a chelating agent that binds nickel. We have used this new linker to bind proteins to a variety of DNA motifs commonly used in the fabrication of nanostructures by DNA self-assembly.
More details from the publisher
More details

Biology, one molecule at a time.

Trends Biochem Sci 34:5 (2009) 234-243

Authors:

Achillefs N Kapanidis, Terence Strick

Abstract:

Single-molecule techniques have moved from being a fascinating curiosity to a highlight of life science research. The single-molecule approach to biology offers distinct advantages over the conventional approach of taking bulk measurements; this additional information content usually comes at the cost of the additional complexity. Popular single-molecule methods include optical and magnetic tweezers, atomic force microscopy, tethered particle motion and single-molecule fluorescence spectroscopy; the complement of these methods offers a wide range of spatial and temporal capabilities. These approaches have been instrumental in addressing important biological questions in diverse areas such as protein-DNA interactions, protein folding and the function(s) of membrane proteins.
More details from the publisher

Single‐molecule analysis of transcription

The FASEB Journal Wiley 23:S1 (2009) 202.1-202.1

Authors:

Richard H Ebright, Shimon Weiss, Anirban Chakraborty, Dongye Wang, You Korlann, Achillefs Kapanidis, Emmanuel Margeat
More details from the publisher

Chapter 5

Chapter in RNA Polymerases as Molecular Motors, Royal Society of Chemistry (RSC) (2009) 115-156

Authors:

Achillefs N Kapanidis, Shimon Weiss
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet