Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

First- and second-generation black hole and neutron star mergers in 2+2 quadruples: population statistics

Monthly Notices of the Royal Astronomical Society Oxford University Press 506:4 (2021) 5345-5360

Authors:

Adrian S Hamers, Giacomo Fragione, Patrick Neunteufel, Bence Kocsis

Abstract:

Recent detections of gravitational waves from mergers of neutron stars (NSs) and black holes (BHs) in the low- and high-end mass gap regimes pose a puzzle to standard stellar and binary evolution theory. Mass-gap mergers may originate from successive mergers in hierarchical systems such as quadruples. Here, we consider repeated mergers of NSs and BHs in stellar 2+2 quadruple systems, in which secular evolution can accelerate the merger of one of the inner binaries. Subsequently, the merger remnant may interact with the companion binary, yielding a second-generation merger. We model the initial stellar and binary evolution of the inner binaries as isolated systems. In the case of successful compact object formation, we subsequently follow the secular dynamical evolution of the quadruple system. When a merger occurs, we take into account merger recoil, and model subsequent evolution using direct N-body integration. With different assumptions on the initial properties, we find that the majority of first-generation mergers are not much affected by secular evolution, with their observational properties mostly consistent with isolated binaries. A small subset shows imprints of secular evolution through residual eccentricity in the LIGO band, and retrograde spin-orbit orientations. Second-generation mergers are ∼107 times less common than first-generation mergers, and can be strongly affected by scattering (i.e. three-body interactions) induced by the first-generation merger. In particular, scattering can account for mergers within the low-end mass gap, although not the high-end mass gap. Also, in a few cases, scattering could explain highly eccentric LIGO sources and negative effective spin parameters.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Thermal equilibrium of an ideal gas in a free-floating box

American Journal of Physics AIP Publishing 89:8 (2021) 789-792

Authors:

Scott Tremaine, Bence Kocsis, Abraham Loeb

Abstract:

The equilibrium and fluctuations of an ideal gas in a rigid container are studied by every student of statistical mechanics. Here, we examine the less well-known case when the box is floating freely; in particular, we determine the fluctuations of the box in velocity and position due to interactions with the gas it contains. This system is a toy model for the fluctuations in velocity and position of a black hole surrounded by stars at the center of a galaxy. These fluctuations may be observable in nearby galaxies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in nuclear star clusters

(2021)

Authors:

Giacomo Fragione, Bence Kocsis, Frederic A Rasio, Joseph Silk
More details from the publisher

High eccentricities and high masses characterize gravitational-wave captures in galactic nuclei as seen by Earth-based detectors

Monthly Notices of the Royal Astronomical Society Oxford University Press 506:2 (2021) 1665-1696

Authors:

Laszlo Gondan, Bence Kocsis

Abstract:

The emission of gravitational waves (GWs) during single-single close encounters in galactic nuclei (GNs) leads to the formation and rapid merger of highly eccentric stellar-mass black hole (BH) binaries. The distinct distribution of physical parameters makes it possible to statistically distinguish this source population from others. Previous studies determined the expected binary parameter distribution for this source population in single GNs. Here, we take into account the effects of dynamical friction, post-Newtonian corrections, and observational bias to determine the detected sources' parameter distributions from all GNs in the Universe. We find that the total binary mass distribution of detected mergers is strongly tilted towards higher masses. The distribution of initial peak GW frequency is remarkably high between 1 and 70 Hz, ~50 per cent of GW capture sources form above 10 Hz with e ≥ 0.95. The eccentricity when first entering the LIGO/Virgo/KAGRA band satisfies e10 Hz > 0.1 for over 92 per cent of sources and e10 Hz > 0.8 for more than half of the sources. At the point when the pericentre reaches 10GM/c2 the eccentricity satisfies e10M > 0.1 for over ~70 per cent of the sources, making single-single GWcapture events in GNs the most eccentric source population among the currently known stellar-mass binary BH merger channels in our Universe. We identify correlations between total mass, mass ratio, source detection distance, and eccentricities e10 Hz and e10M. The recently measured source parameters of GW190521 lie close to the peak of the theoretical distributions and the estimated escape speed of the host environment is ~7.5 × 103-1.2 × 104 km s-1, making this source a candidate for this astrophysical merger channel.
More details from the publisher
Details from ORA
More details
More details
More details

A Canonical Transformation to Eliminate Resonant Perturbations. I.

American Astronomical Society 162:1 (2021) 22

Authors:

Barnabás Deme, Bence Kocsis
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet