Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

Black hole mergers from an evolving population of globular clusters

(2018)

Authors:

Giacomo Fragione, Bence Kocsis
More details from the publisher

Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters

ASTROPHYSICAL JOURNAL American Astronomical Society 860:1 (2018) ARTN 5

Authors:

Laszlo Gondan, Bence Kocsis, Peter Raffai, Zsolt Frei

Abstract:

Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 Msun and 80 Msun, we find that between 43-69% (68-94%) of 30 Msun - 30 Msun (10 Msun - 10 Msun) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than 10% of the sources with binary component masses less than 30 Msun remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005-0.05 for the lower-mass BHs, and 0.1 - 0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasi-circular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 479:1 (2018) 900-916

Authors:

Manuel Arca-Sedda, Bence Kocsis, Timothy D Brandt
More details from the publisher
Details from ORA
More details

Order in the chaos: eccentric black hole binary mergers in triples formed via strong binary-binary scatterings

(2018)

Authors:

Manuel Arca-Sedda, Gongjie Li, Bence Kocsis
More details from the publisher

Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect

The Astrophysical Journal American Astronomical Society 856:2 (2018) 140-140

Authors:

Bao-Minh Hoang, Smadar Naoz, Bence Kocsis, Frederic A Rasio, Fani Dosopoulou

Abstract:

Nuclear star clusters around massive black holes are expected to be abundant in stellar mass black holes and black hole binaries. These binaries form a hierarchical triple system with the massive black hole at the center. Gravitational perturbations from the massive black hole can cause high eccentricity excitation. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small that gravitational wave emission drives the binary to merge. In this paper, we consider a simple proof of concept and explore the effect of the eccentric Kozai-Lidov mechanism for unequal mass binaries. We perform a set of Monte Carlo simulations on BH-BH binaries in galactic nuclei with quadrupole and octupole-level secular perturbations, general relativistic precession, and gravitational wave emission. For a nominal number of steady-state BH-BH binaries, our model gives a total merger rate $\sim 1 - 3$$Gpc^{-3} yr^{-1}$, depending on the assumed density profile. Thus, our model potentially competes with other dynamical mechanisms, such as the dynamical formations and mergers of BH binaries in globular clusters or dense nuclear clusters without a massive black hole. We provide predictions for the distributions of these LIGO sources in galactic nuclei.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet