Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections
ASTROPHYSICAL JOURNAL American Astronomical Society 855:1 (2018) ARTN 34
Abstract:
Mergers of stellar-mass black holes on highly eccentric orbits are among the targets for ground-based gravitational-wave detectors, including LIGO, VIRGO, and KAGRA. These sources may commonly form through gravitational-wave emission in high velocity dispersion systems or through the secular Kozai-Lidov mechanism in triple systems. Gravitational waves carry information about the binaries' orbital parameters and source location. Using the Fisher matrix technique, we determine the measurement accuracy with which the LIGO-VIRGO-KAGRA network could measure the source parameters of eccentric binaries using a matched filtering search of the repeated burst and eccentric inspiral phases of the waveform. We account for general relativistic precession and the evolution of the orbital eccentricity and frequency during the inspiral. We find that the signal-to-noise ratio and the parameter measurement accuracy may be significantly higher for eccentric sources than for circular sources. This increase is sensitive to the initial pericenter distance, the initial eccentricity, and component masses. For instance, compared to a 30 Msun-30 Msun non-spinning circular binary, the chirp mass and sky localization accuracy can improve for an initially highly eccentric binary by a factor of ~129 (38) and ~2 (11) assuming an initial pericenter distance of 20 Mtot (10 Mtot).Hidden Universality in the Merger Rate Distribution in the Primordial Black Hole Scenario
ASTROPHYSICAL JOURNAL American Astronomical Society 854:1 (2018) ARTN 41
Abstract:
It has been proposed that primordial black holes (PBHs) form binaries in the radiation dominated era. Once formed, some fraction of them may merge within the age of the Universe by gravitational radiation reaction. We investigate the merger rate of the PBH binaries when the PBHs have a distribution of masses around ${\cal O}(10) M_\odot$, which is a generalization of the previous studies where the PBHs are assumed to have the same mass. After deriving a formula for the merger time probability distribution in the PBH mass plane, we evaluate it under two different approximations. We identify a quantity constructed from the mass-distribution of the merger rate density per unit cosmic time and comoving volume $\mathcal{R}(m_1,m_2)$, $\alpha = -{(m_1+m_2)}^2\partial^2 \ln\mathcal{R}/\partial m_1\partial m_2 $, which universally satisfies $0.97 \lesssim \alpha \lesssim 1.05$ for all binary masses independently of the PBH mass function. This result suggests that the measurement of this quantity is useful for testing the PBH scenario.Isotropic-Nematic Phase Transitions in Gravitational Systems II: Higher Order Multipoles
(2017)