DETECTING TRIPLE SYSTEMS WITH GRAVITATIONAL WAVE OBSERVATIONS
ASTROPHYSICAL JOURNAL American Astronomical Society 834:2 (2017) ARTN 200
Abstract:
The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the light-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 R⊙ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence.DYNAMICAL FORMATION SIGNATURES OF BLACK HOLE BINARIES IN THE FIRST DETECTED MERGERS BY LIGO
ASTROPHYSICAL JOURNAL LETTERS American Astronomical Society 824:1 (2016) ARTN L12
Abstract:
© 2016. The American Astronomical Society. All rights reserved.. The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as ∝Mtotβ, with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO's greater sensitivity to massive black hole binaries with M tot ≲ 80 . We find that for power-law BH mass functions dN/dM ∝ M -α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ∼5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 460:4 (2016) 3494-3504
Abstract:
© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. Most, if not all, stars in the field are born in binary configurations or higher multiplicity systems. In dense stellar environment such as the Galactic Center (GC), many stars are expected to be in binary configurations as well. These binaries form hierarchical triple-body systems, with the massive black hole (MBH) as the third, distant object. The stellar binaries are expected to undergo large-amplitude eccentricity and inclination oscillations via the so-called 'eccentric Kozai-Lidov' mechanism. These eccentricity excitations, combined with post-main-sequence stellar evolution, can drive the inner stellar binaries to merge. We study the mergers of stellar binaries in the inner 0.1 pc of the GC caused by gravitational perturbations due to the MBH. We run a large set of Monte Carlo simulations that include the secular evolution of the orbits, general relativistic precession, tides and post-main-sequence stellar evolution. We find that about 13 per cent of the initial binary population will have merged after a few Myr and about 29 per cent after a few Gyr. These expected merged systems represent a new class of objects at the GC, and we speculate that they are connected to G2-like objects and the young stellar population.Detecting triple systems with gravitational wave observations
(2016)