Neural networks are a priori biased towards Boolean functions with low entropy
(2019)
TacoxDNA: A user-friendly web server for simulations of complex DNA structures, from single strands to origami
Journal of Computational Chemistry Wiley 40:29 (2019) 2586-2595
Abstract:
Simulations of nucleic acids at different levels of structural details are increasingly used to complement and interpret experiments in different fields, from biophysics to medicine and materials science. However, the various structural models currently available for DNA and RNA and their accompanying suites of computational tools can be very rarely used in a synergistic fashion. The tacoxDNA webserver and standalone software package presented here are a step toward a long-sought interoperability of nucleic acids models. The webserver offers a simple interface for converting various common input formats of DNA structures and setting up molecular dynamics (MD) simulations. Users can, for instance, design DNA rings with different topologies, such as knots, with and without supercoiling, by simply providing an XYZ coordinate file of the DNA centre-line. More complex DNA geometries, as designable in the cadnano, CanDo and Tiamat tools, can also be converted to all-atom or oxDNA representations, which can then be used to run MD simulations. Though the latter are currently geared toward the native and LAMMPS oxDNA representations, the open-source package is designed to be further expandable. TacoxDNA is available at http://tacoxdna.sissa.it. © 2019 Wiley Periodicals, Inc.Identifying physical causes of apparent enhanced cyclization of short DNA molecules with a coarse-grained model
Journal of Chemical Theory and Computation American Chemical Society 15:8 (2019) 4660-4672
Abstract:
DNA cyclization is a powerful technique to gain insight into the nature of DNA bending. While the wormlike chain model provides a good description of small to moderate bending fluctuations, it is expected to break down for large bending. Recent cyclization experiments on strongly bent shorter molecules indeed suggest enhanced flexibility over and above that expected from the wormlike chain. Here, we use a coarse-grained model of DNA to investigate the subtle thermodynamics of DNA cyclization for molecules ranging from 30 to 210 base pairs. As the molecules get shorter, we find increasing deviations between our computed equilibrium j-factor and the classic wormlike chain predictions of Shimada and Yamakawa for a torsionally aligned looped molecule. These deviations are due to sharp kinking, first at nicks, and only subsequently in the body of the duplex. At the shortest lengths, substantial fraying at the ends of duplex domains is the dominant method of relaxation. We also estimate the dynamic j-factor measured in recent FRET experiments. We find that the dynamic j-factor is systematically larger than its equilibrium counterpart-with the deviation larger for shorter molecules-because not all the stress present in the fully cyclized state is present in the transition state. These observations are important for the interpretation of recent cyclization experiments, suggesting that measured anomalously high j-factors may not necessarily indicate non-WLC behavior in the body of duplexes.Coarse-grained modelling of the structural properties of DNA origami
Nucleic Acids Research Oxford University Press 47:3 (2019) 1585-1597
Abstract:
We use the oxDNA coarse-grained model to provide a detailed characterization of the fundamental structural properties of DNA origami, focussing on archetypal 2D and 3D origami. The model reproduces well the characteristic pattern of helix bending in a 2D origami, showing that it stems from the intrinsic tendency of anti-parallel four-way junctions to splay apart, a tendency that is enhanced both by less screened electrostatic interactions and by increased thermal motion. We also compare to the structure of a 3D origami whose structure has been determined by cryo-electron microscopy. The oxDNA average structure has a root-mean-square deviation from the experimental structure of 8.4 Å, which is of the order of the experimental resolution. These results illustrate that the oxDNA model is capable of providing detailed and accurate insights into the structure of DNA origami, and has the potential to be used to routinely pre-screen putative origami designs and to investigate the molecular mechanisms that regulate the properties of DNA origami.Deep learning generalizes because the parameter-function map is biased towards simple functions
7th International Conference on Learning Representations, ICLR 2019 (2019)