Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model.

ACS nano American Chemical Society 10:4 (2016) 4236-4247

Authors:

JS Schreck, F Romano, MH Zimmer, AA Louis, Jonathan Doye

Abstract:

We use oxDNA, a coarse-grained model of DNA at the nucleotide level, to simulate large nanoprisms that are composed of multi-arm star tiles, in which the size of bulge loops that have been incorporated into the tile design are used to control the flexibility of the tiles. The oxDNA model predicts equilibrium structures for several different nanoprism designs that are in excellent agreement with the experimental structures as measured by cryoTEM. In particular we reproduce the chiral twisting of the top and bottom faces of the nanoprisms as the bulge sizes in these structures are varied due to the greater flexibility of larger bulges. We are also able to follow how the properties of the star tiles evolve as the prisms are assembled. Individual star tiles are very flexible, but their structures become increasingly well-defined and rigid as they are incorporated into larger assemblies. oxDNA also finds that the experimentally observed prisms are more stable than their inverted counterparts, but interestingly this preference for the arms of the tiles to bend in a given direction only emerges after they are part of larger assemblies. These results show the potential for oxDNA to provide detailed structural insight as well as to predict the properties of DNA nanostructures, and hence to aid rational design in DNA nanotechnology.
More details from the publisher
Details from ORA
More details

Genetic Correlations Greatly Increase Mutational Robustness and Can Both Reduce and Enhance Evolvability

PLOS Computational Biology Public Library of Science (PLoS) 12:3 (2016) e1004773

Authors:

Sam F Greenbury, Steffen Schaper, Sebastian E Ahnert, Ard A Louis
More details from the publisher
More details
More details

Direct simulation of the self-assembly of a small DNA origami

ACS Nano American Chemical Society 10:2 (2016) 1724-1737

Authors:

Benedict EK Snodin, Flavio Romano, Lorenzo Rovigatti, Thomas E Ouldridge, Ard A Louis, Jonathan Doye

Abstract:

By using oxDNA, a coarse-grained nucleotide-level model of DNA, we are able to directly simulate the self-assembly of a small 384-base-pair origami from single-stranded scaffold and staple strands in solution. In general, we see attachment of new staple strands occurring in parallel, but with cooperativity evident for the binding of the second domain of a staple if the adjacent junction is already partially formed. For a system with exactly one copy of each staple strand, we observe a complete assembly pathway in an intermediate temperature window; at low temperatures successful assembly is prevented by misbonding while at higher temperature the free-energy barriers to assembly become too large for assembly on our simulation time scales. For high-concentration systems involving a large staple strand excess, we never see complete assembly because there are invariably instances where two copies of the same staple both bind to the scaffold, creating a kinetic trap that prevents the complete binding of either staple. This mutual staple blocking could also lead to aggregates of partially formed origamis in real systems, and helps to rationalize certain successful origami design strategies.
More details from the publisher
Details from ORA
More details
More details

Precision control of DNA-based molecular reactions

Institution of Engineering and Technology (IET) (2016) 1 .-1 .

Authors:

TE Ouldridge, JS Schreck, F Romano, P Sulc, RF Machinek, NEC Haley, AA Louis, JPK Doye, J Bath, AJ Turberfield
More details from the publisher

The structure of the genotype–phenotype map strongly constrains the evolution of non-coding RNA

Interface Focus The Royal Society 5:6 (2015) 20150053

Authors:

Kamaludin Dingle, Steffen Schaper, Ard A Louis
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet