Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John March-Russell

Professor of Theoretical Physics and Senior Research Fellow, New College, Oxford; Perimeter Institute Distinguished Visiting Research Chair

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • AION/Magis
John.March-Russell@physics.ox.ac.uk
Telephone: 01865 (2)73630
Rudolf Peierls Centre for Theoretical Physics, room 60.05
  • About
  • Publications

The Flavour Hierarchy and See-Saw Neutrinos from Bulk Masses in 5d Orbifold GUTs

ArXiv hep-ph/0205143 (2002)

Authors:

Arthur Hebecker, John March-Russell

Abstract:

In supersymmetric grand unified theories (GUTs) based on S^1/(Z_2 x Z'_2) orbifold constructions in 5 dimensions, Standard Model (SM) matter and Higgs fields can be realized in terms of 5d hypermultiplets. These hypermultiplets can naturally have large bulk masses, leading to a localization of the zero modes at one of the two branes or to an exponential suppression of the mass of the lowest-lying non-zero mode. We demonstrate that these dynamical features allow for the construction of an elegant 3-generation SU(5) model in 5 dimensions that explains all the hierarchies between fermion masses and CKM matrix elements in geometrical terms. Moreover, if U(1)_\chi (where SU(5) x U(1)_\chi \subset SO(10)) is gauged in the bulk, but broken by the orbifold action at the SM brane, the right-handed neutrino mass scale is naturally suppressed relative to M_GUT. Together with our construction in the charged fermion sector this leads, via the usual see-saw mechanism, to a realistic light neutrino mass scale and large neutrino mixing angles.
Details from ArXiV
More details from the publisher

The Flavour Hierarchy and See-Saw Neutrinos from Bulk Masses in 5d Orbifold GUTs

(2002)

Authors:

Arthur Hebecker, John March-Russell
More details from the publisher

Proton Decay Signatures of Orbifold GUTs

ArXiv hep-ph/0204037 (2002)

Authors:

Arthur Hebecker, John March-Russell

Abstract:

In grand unified theories based on orbifold constructions in higher dimensions, Higgsino-mediated proton decay is absent. However, proton decay mediated by $X$ and $Y$ gauge bosons is typically enhanced to levels detectable by current and future experiments. We analyse the phenomenology of proton decay induced by the minimal coupling of $X,Y$ gauge bosons. In particular, we show that the novel realization of matter in orbifold GUTs can lead to unusual final state flavour structure, for example, the dominance of the $p\to K^0\mu^+$ mode. Furthermore, we discuss proton decay induced by higher-derivative brane operators, finding potentially observable rates for natural values of the operator coefficients.
Details from ArXiV
More details from the publisher

Proton Decay Signatures of Orbifold GUTs

(2002)

Authors:

Arthur Hebecker, John March-Russell
More details from the publisher

Calculable Corrections to Brane Black Hole Decay I: The Scalar Case

ArXiv hep-ph/0203223 (2002)

Authors:

Panagiota Kanti, John March-Russell

Abstract:

In the context of brane-world theories, the production cross-section for black holes may be greatly enhanced. Such black holes can in principle lead to detectable signals via their Hawking evaporation to brane-localized modes. We calculate, in the semiclassical approximation, the leading corrections to the energy spectrum (the greybody factors) for decay into scalar fields, as a function of the number of toroidally compactified extra dimensions, and partial wave number.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet