Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John March-Russell

Professor of Theoretical Physics and Senior Research Fellow, New College, Oxford; Perimeter Institute Distinguished Visiting Research Chair

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • AION/Magis
John.March-Russell@physics.ox.ac.uk
Telephone: 01865 (2)73630
Rudolf Peierls Centre for Theoretical Physics, room 60.05
  • About
  • Publications

Pseudo-Goldstones from Supersymmetric Wilson Lines on 5D Orbifolds

ArXiv hep-ph/0503255 (2005)

Authors:

Thomas Flacke, Babiker Hassanain, John March-Russell

Abstract:

We consider a U(1) gauge theory on the five dimensional orbifold $\mathcal{M}_4\times S^1/Z_2$, where $A_5$ has even $Z_2$ parity. This leads to a light pseudoscalar degree of freedom $W(x)$ in the effective 4D theory below the compactification scale arising from a gauge-invariant brane-to-brane Wilson line. As noted by Arkani-Hamed et al in the non-supersymmetric $S^1$ case the 5D bulk gauge-invariance of the underlying theory together with the non-local nature of the Wilson line field leads to the protection of the 4D theory of $W(x)$ from possible large global-symmetry violating quantum gravitational effects. We study the $S^1/Z_2$ theory in detail, in particular developing the supersymmetric generalization of this construction, involving a pseudoscalar Goldstone field (the `axion') and its scalar and fermion superpartners (`saxion' and `axino'). The global nature of $W(x)$ implies the absence of independent Kaluza-Klein excitations of its component fields. The non-derivative interactions of the (supersymmetric) Wilson line in the effective 4D theory arising from U(1) charged 5D fields $\Phi$ propagating between the boundary branes are studied. We show that, similar to the non-supersymmetric $S^1$ case, these interactions are suppressed by $\exp(-\pi R m_{\Phi})$ where $\pi R$ is the size of the extra dimension.
Details from ArXiV
Details from ORA

Pseudo-Goldstones from Supersymmetric Wilson Lines on 5D Orbifolds

(2005)

Authors:

Thomas Flacke, Babiker Hassanain, John March-Russell
More details from the publisher

Gauge Mediated Supersymmetry Breaking and Multi-TeV Gamma-Rays from the Galactic Center

ArXiv hep-ph/0412048 (2004)

Authors:

Dan Hooper, John March-Russell

Abstract:

Recently, the HESS telescope has observed a gamma-ray spectrum from the galactic center extending to at least $\sim$10 TeV. Although it has been suggested that this could be the product of annihilating dark matter particles, the candidates most frequently discussed (such as neutralinos) are far too light to account for this flux. In this letter, we consider stable particles from the messenger sector of gauge mediated supersymmetry breaking models as an alternative dark matter candidate. We find that a 20 to 30 TeV messenger state can provide a thermal relic density consistent with the measured dark matter density of the universe and can indeed generate the spectrum observed by HESS.
Details from ArXiV
More details from the publisher

Gauge Mediated Supersymmetry Breaking and Multi-TeV Gamma-Rays from the Galactic Center

(2004)

Authors:

Dan Hooper, John March-Russell
More details from the publisher

Asymmetric Sneutrino Dark Matter and the Omega(b)/Omega(DM) Puzzle

ArXiv hep-ph/0410114 (2004)

Authors:

Dan Hooper, John March-Russell, Stephen M West

Abstract:

The inferred values of the cosmological baryon and dark matter densities are strikingly similar, but in most theories of the early universe there is no true explanation of this fact; in particular, the baryon asymmetry and thus density depends upon unknown, and {\it a priori} unknown and possibly small, CP-violating phases which are independent of all parameters determining the dark matter density. We consider models of dark matter possessing a particle-antiparticle asymmetry where this asymmetry determines both the baryon asymmetry and strongly effects the dark matter density, thus naturally linking $\Omega_{\rm{b}}$ and $\Omega_{\rm{dm}}$. We show that sneutrinos can play the role of such dark matter in a previously studied variant of the MSSM in which the light neutrino masses result from higher-dimensional supersymmetry-breaking terms.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet