Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Chiara Marletto

Postdoctoral Research Assistant

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
chiara.marletto@physics.ox.ac.uk
Clarendon Laboratory, room 241.9
  • About
  • Publications

The science of can and can't

The New Scientist Elsevier 250:3330 (2021) 34-37
More details from the publisher

Transforming pure and mixed states using an NMR quantum homogeniser

Physical Review A American Physical Society 103 (2021) 022414

Authors:

Maria Violaris, Gaurav Bhole, Jonathan A Jones, Vlatko Vedral, Chiara Marletto

Abstract:

The universal quantum homogeniser can transform a qubit from any state to any other state with arbitrary accuracy, using only unitary transformations to perform this task. Here we present an implementation of a finite quantum homogeniser using nuclear magnetic resonance (NMR), with a four-qubit system. We compare the homogenisation of a mixed state to a pure state, and the reverse process. After accounting for the effects of decoherence in the system, we find the experimental results to be consistent with the theoretical symmetry in how the qubit states evolve in the two cases. We analyse the implications of this symmetry by interpreting the homogeniser as a physical implementation of pure state preparation and information scrambling.
More details
More details from the publisher
Details from ORA
More details
Details from ArXiV

Witnessing nonclassicality beyond quantum theory

Physical Review D American Physical Society (APS) 102:8 (2020) 086012

Authors:

Chiara Marletto, Vlatko Vedral
More details from the publisher

Aharonov-Bohm Phase is Locally Generated Like All Other Quantum Phases.

Physical review letters 125:4 (2020) 040401

Authors:

Chiara Marletto, Vlatko Vedral

Abstract:

In the Aharonov-Bohm (AB) effect, a superposed charge acquires a detectable phase by enclosing an infinite solenoid, in a region where the solenoid's electric and magnetic fields are zero. Its generation seems therefore explainable only by the local action of gauge-dependent potentials, not of gauge-independent fields. This was recently challenged by Vaidman, who explained the phase by the solenoid's current interacting with the electron's field (at the solenoid). Still, his model has a residual nonlocality: it does not explain how the phase, generated at the solenoid, is detectable on the charge. In this Letter, we solve this nonlocality explicitly by quantizing the field. We show that the AB phase is mediated locally by the entanglement between the charge and the photons, like all electromagnetic phases. We also predict a gauge-invariant value for the phase difference at each point along the charge's path. We propose a realistic experiment to measure this phase difference locally, by partial quantum state tomography on the charge, without closing the interference loop.
More details from the publisher
More details
More details

On the Testability of the Equivalence Principle as a Gauge Principle Detecting the Gravitational t3 Phase

Frontiers in Physics Frontiers 8 (2020) 176

Authors:

Chiara Marletto, Vlatko Vedral
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet