Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Chiara Marletto

Postdoctoral Research Assistant

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
chiara.marletto@physics.ox.ac.uk
Clarendon Laboratory, room 241.9
  • About
  • Publications

Witnesses of non-classicality for simulated hybrid quantum systems

Journal of Physics Communications IOP Publishing 4:2 (2020) 025013

Authors:

Jonathan A Jones, Gaurav Bhole, Chiara Marletto, Vlatko Vedral

Abstract:

The task of testing whether quantum theory applies to all physical systems and all scales requires considering situations where a quantum probe interacts with another system that need not obey quantum theory in full. Important examples include the cases where a quantum mass probes the gravitational field, for which a unique quantum theory of gravity does not yet exist, or a quantum field, such as light, interacts with a macroscopic system, such as a biological molecule, which may or may not obey unitary quantum theory. In this context a class of experiments has recently been proposed, where the non-classicality of a physical system that need not obey quantum theory (the gravitational field) can be tested indirectly by detecting whether or not the system is capable of entangling two quantum probes. Here we illustrate some of the subtleties of the argument, to do with the role of locality of interactions and of non-classicality, and perform proof-of-principle experiments illustrating the logic of the proposals, using a Nuclear Magnetic Resonance quantum computational platform with four qubits.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Non-Monogamy of Spatio-Temporal Correlations and the Black Hole Information Loss Paradox.

Entropy (Basel, Switzerland) 22:2 (2020) E228

Authors:

Chiara Marletto, Vlatko Vedral, Salvatore Virzì, Enrico Rebufello, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, Marco Genovese

Abstract:

Pseudo-density matrices are a generalisation of quantum states and do not obey monogamy of quantum correlations. Could this be the solution to the paradox of information loss during the evaporation of a black hole? In this paper we discuss this possibility, providing a theoretical proposal to extend quantum theory with these pseudo-states to describe the statistics arising in black-hole evaporation. We also provide an experimental demonstration of this theoretical proposal, using a simulation in optical regime, that tomographically reproduces the correlations of the pseudo-density matrix describing this physical phenomenon.
More details from the publisher
More details
More details

Is the fermionic exchange phase also acquired locally?

Journal of Physics Communications IOP Publishing 3:11 (2019) 111001

Authors:

Chiara Marletto, Vlatko Vedral
More details from the publisher

Theoretical description and experimental simulation of quantum entanglement near open time-like curves via pseudo-density operators

Nature Communications Springer Nature 10 (2019) 182

Authors:

Chiara Marletto, Vlatko Vedral, S Virzì, E Rebufello, A Avella, F Piacentini, M Gramegna, IP Degiovanni, M Genovese

Abstract:

Closed timelike curves are striking predictions of general relativity allowing for time-travel. They are afflicted by notorious causality issues (e.g. grandfather's paradox). Quantum models where a qubit travels back in time solve these problems, at the cost of violating quantum theory's linearity-leading e.g. to universal quantum cloning. Interestingly, linearity is violated even by open timelike curves (OTCs), where the qubit does not interact with its past copy, but is initially entangled with another qubit. Non-linear dynamics is needed to avoid violating entanglement monogamy. Here we propose an alternative approach to OTCs, allowing for monogamy violations. Specifically, we describe the qubit in the OTC via a pseudo-density operator-a unified descriptor of both temporal and spatial correlations. We also simulate the monogamy violation with polarization-entangled photons, providing a pseudo-density operator quantum tomography. Remarkably, our proposal applies to any space-time correlations violating entanglement monogamy, such as those arising in black holes.
More details from the publisher
Details from ORA
More details
More details

Probing quantum features of photosynthetic organisms

npj Quantum Information Nature Research 4:1 (2018)

Authors:

T Krisnanda, Chiara Marletto, Vlatko Vedral, M Paternostro, T Paterek

Abstract:

Recent experiments have demonstrated strong coupling between living bacteria and light. Here we propose a scheme capable of revealing non-classical features of the bacteria (quantum discord of light–bacteria correlations) without exact modelling of the organisms and their interactions with external world. The scheme puts the bacteria in a role of mediators of quantum entanglement between otherwise non-interacting probing light modes. We then propose a plausible model of this experiment, using recently achieved parameters, demonstrating the feasibility of the scheme. Within this model we find that the steady-state entanglement between the probes, which does not depend on the initial conditions, is accompanied by entanglement between the probes and bacteria, and provides independent evidence of the strong coupling between them.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet