Sparse Reconstruction of Wavefronts using an Over-Complete Phase Dictionary
(2024)
Electrothermal filamentation of igniting plasmas
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 110 (2024) 035205
Abstract:
Dense, hot plasmas are susceptible to the electrothermal instability: a collisional process which permits temperature perturbations in electron currents to grow. It is shown here for the first time that linearising a system comprised of two opposing currents and a mobile ion-background as three distinct fluids yields unstable modes with rapid growth rates (∼ 1013 s −1 ) for wavenumbers below a threshold kth. An analytical threshold condition is derived, this being surpassed for typical hot-spot and shell parameters. Particle-in-cell simulations successfully benchmark the predicted growth rates and threshold behaviour. Electrothermal filamentation within the shell will impact the burn wave propagation into the cold fuel and resulting burn dynamics.Gravitational waves from high-power twisted light
Physical Review D American Physical Society 110 (2024) 044023
Abstract:
Recent advances in high-energy and high-peak-power laser systems have opened up new possibilities for fundamental physics research. In this work, the potential of twisted light for the generation of gravitational waves in the high frequency regime is explored for the first time. Focusing on Bessel beams, novel analytic expressions and numerical computations for the generated metric perturbations and associated powers are presented. The gravitational peak intensity is shown to reach 1.44 × 10−5 W.m−2 close to the source, and 1.01 × 10−19 W.m−2 ten meters away. Compelling evidence is provided that the properties of the generated gravitational waves, such as frequency, polarisation states and direction of emission, are controllable by the laser pulse parameters and optical arrangements.Fundamental physics opportunities with multi-petawatt- and multi-megaJoule-class facilities
High Energy Density Physics Elsevier 52 (2024)
Abstract:
In this invited paper, I will touch on some highlights from my research career in the Clarendon Laboratory and in the Central Laser Facility, Rutherford Appleton Laboratory, obtained working in partnership with many outstanding international collaborators. These fall under the three broad themes. The first is novel laser-plasma interactions. The second theme is that of extreme field physics using multi-petawatt laser facilities. The third theme is that of inertial fusion studies. All of these studies indicate that an international, dual-use, 20-MJ Inertial Confinement Fusion (ICF)/Inertial Fusion Energy (IFE) facility, with the first 2-MJ at high repetition rate supplying single-shot high energy amplifiers, will open many new exciting avenues for both fundamental physics and high energy density science in the decades ahead.Attosecond and nano-Coulomb electron bunches via the Zero Vector Potential mechanism
Scientific Reports Springer Nature 14:1 (2024) 10805