Time-resolved Measurement of Power Transfer in Plasma Amplifier Experiments on NIF
Optica Publishing Group (2021) jtu3a.39
Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition.
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences The Royal Society 379:2189 (2020) ARTN 20200039
Abstract:
Two-dimensional particle-in-cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the plasma reflecting and accelerating the background ions. Our results suggest that protons with characteristics suitable for ion fast ignition may be achieved in this way. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences The Royal Society 379:2189 (2020) 20200224
Abstract:
Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh-Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity, in-flight aspect ratio and applied laser power aim to further reduce instability growth, resulting in a new regime where performance can be well represented by one-dimensional (1D) hydrodynamic simulations. A simulation campaign was performed using the 1D radiation-hydrodynamics code HYADES to investigate the performance that could be achieved using direct drive implosions of liquid layer capsules, over a range of relevant energies. Results include potential gains of 0.19 on LMJ-scale systems and 0.75 on NIF-scale systems, and a reactor-level gain of 54 for an 8.5 MJ implosion. While the use of 1D simulations limits the accuracy of these results, they indicate a sufficiently high level of performance to warrant further investigations and verification of this new low-instability regime. This potentially suggests an attractive new approach to fusion energy.Preparations for a European R&D roadmap for an inertial fusion demo reactor
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences The Royal Society 379 (2020) 20200005
Abstract:
A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020.Prospects for high gain inertial fusion energy: an introduction to the second edition
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences The Royal Society 379:2189 (2020) 20200028