Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Ionization states for the multipetawatt laser-QED regime

Physical Review E American Physical Society 106:1 (2022) 015205

Authors:

I Ouatu, BT Spiers, R Aboushelbaya, Q Feng, Mw von der Leyen, RW Paddock, R Timmis, C Ticos, Km Krushelnick, PA Norreys

Abstract:

A paradigm shift in the physics of laser-plasma interactions is approaching with the commissioning of multipetawatt laser facilities worldwide. Radiation reaction processes will result in the onset of electron-positron pair cascades and, with that, the absorption and partitioning of the incident laser energy, as well as the energy transport throughout the irradiated targets. To accurately quantify these effects, one must know the focused intensity on target in situ. In this work, a way of measuring the focused intensity on target is proposed based upon the ionization of xenon gas at low ambient pressure. The field ionization rates from two works [Phys. Rev. A 59, 569 (1999) and Phys. Rev. A 98, 043407 (2018)], where the latter rate has been derived using quantum mechanics, have been implemented in the particle-in-cell code SMILEI [Comput. Phys. Commun. 222, 351 (2018)]. A series of one- and two-dimensional simulations are compared and shown to reproduce the charge states without presenting visible differences when increasing the simulation dimensionality. They provide a way to accurately verify the intensity on target using in situ measurements.
More details from the publisher
Details from ORA
More details
More details

Pathways towards break-even for low convergence ratio direct-drive ICF

Journal of Plasma Physics Cambridge University Press 88:3 (2022) 905880314

Authors:

R Paddock, Heath Martin, Rusko Ruskov, Robbie Scott, Warren Garbett, Brian Haines, Alex Zylstra, Mike Campbell, Tim Collins, Steven Craxton, Ca Thomas, Valeri Goncharov, Ramy Aboushelbaya, Qingsong Feng, Marko von der LEYEN, Iustin Ouatu, Benjamin Spiers, Robin Timmis, Robin Wang, Peter Norreys

Abstract:

Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 kJ and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of 1D-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break-even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.
More details from the publisher
Details from ORA

Pathways towards break even for low convergence ratio direct-drive inertial confinement fusion

Journal of Plasma Physics Cambridge University Press 88:3 (2022) 905880314

Authors:

Rw Paddock, H Martin, Rt Ruskov, Rhh Scott, W Garbett, Bm Haines, Ab Zylstra, Em Campbell, Tjb Collins, Rs Craxton, Ca Thomas, Vn Goncharov, R Aboushelbaya, Qs Feng, Mw von der Leyen, I Ouatu, Bt Spiers, R Timmis, Rhw Wang, Pa Norreys

Abstract:

Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of one-dimensional-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.

More details from the publisher
Details from ORA
More details

Absolute calibration of Fujifilm BAS-TR image plate response to laser driven protons up to 40 MeV

Review of Scientific Instruments American Institute of Physics 93:5 (2022) 53303

Authors:

P Martin, H Ahmed, D Doria, A Alejo, R Clarke, S Ferguson, J Fernández-Tobias, Rr Freeman, J Fuchs, A Green, Js Green, D Gwynne, F Hanton, J Jarrett, D Jung, Kf Kakolee, Ag Krygier, Cls Lewis, A McIlvenny, P McKenna, Jt Morrison, Z Najmudin, K Naughton, G Nersisyan, P Norreys, M Notley, M Roth, Ja Ruiz, C Scullion, M Zepf, S Zhai, M Borghesi, S Kar

Abstract:

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.
More details from the publisher
Details from ORA
More details
More details

Production of high fluence laser beams using ion wave plasma optics

Applied Physics Letters AIP Publishing 120 (2022) 200501

Authors:

Robert Kirkwood, Patrick Poole, Dan Kalantar, Thomas Chapman, Scott Wilks, Matthew Edwards, David Turnbull, Pierre Michel, Laurent Divol, Nathaniel Fisch, Peter Norreys, Wojciech Rozmus, Jeffrey Bude, Brent Blue, Kevin Fournier, Bruno Van Wonterghem, Andrew MacKinnon, Peter Norreys

Abstract:

Optical components for laser beams with high peak and averaged powers are being developed worldwide using stimulated plasma scattering that occurs when plasmas interact with intense, coherent light. After decades of pursuit of pulse compressors, mirrors, and other plasma based components that can be created by stimulated scattering from electron density perturbations forming on ultra-short time scales (e.g., via Stimulated Raman Scattering), more recent work has produced optical components on longer time scales allowing ion motion as well [via Stimulated Brillouin Scattering (SBS)]. In the most recent work, ion wave plasma optics have had success in producing pulses of focusable coherent light with high energy and fluence by operating on ns time scales and now promise to enable numerous applications. Experiments have further shown that in some parameter regimes, even simple plasma response models can describe the output of such optics with sufficient accuracy that they can be used as engineering tools to design plasma optics for future applications, as is already being done to control power deposition in fusion targets. In addition, the development of more sophisticated models promises to enable still higher performance from SBS driven plasma optical components under a wider range of conditions. The present status and most promising directions for future development of ion wave plasma optic techniques are discussed here.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet