Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

EMP from LWFA with Two Collinear, Time-Separated Laser Beams

Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 1-4

Authors:

Joshua Latham, Marko W Mayr, Yong Ma, Paul T Campbell, Qian Qian, Andre F Antoine, Mario Balcazar, Jason Cardarelli, Rebecca Fitzgarrald, Andrew McKelvey, Galina Kalinchenko, Bixue Hou, Anatoly M Maksimchuk, John Nees, Alexander GR Thomas, Peter A Norreys, Karl M Krushelnick
More details from the publisher
More details

Stabilized radiation pressure acceleration and neutron generation in ultrathin deuterated foils

Physical Review Letters American Physical Society 129:11 (2022) 114801

Authors:

A Alejo, H Ahmed, Ag Krygier, R Clarke, Rr Freeman, J Fuchs, A Green, Js Green, D Jung, A Kleinschmidt, Jt Morrison, Z Najmudin, H Nakamura, P Norreys, M Notley, M Oliver, M Roth, L Vassura, M Zepf, M Borghesi, S Kar

Abstract:

Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration.
More details from the publisher
Details from ORA
More details
More details
More details

Ionization states for the multipetawatt laser-QED regime

Physical Review E American Physical Society 106:1 (2022) 015205

Authors:

I Ouatu, BT Spiers, R Aboushelbaya, Q Feng, Mw von der Leyen, RW Paddock, R Timmis, C Ticos, Km Krushelnick, PA Norreys

Abstract:

A paradigm shift in the physics of laser-plasma interactions is approaching with the commissioning of multipetawatt laser facilities worldwide. Radiation reaction processes will result in the onset of electron-positron pair cascades and, with that, the absorption and partitioning of the incident laser energy, as well as the energy transport throughout the irradiated targets. To accurately quantify these effects, one must know the focused intensity on target in situ. In this work, a way of measuring the focused intensity on target is proposed based upon the ionization of xenon gas at low ambient pressure. The field ionization rates from two works [Phys. Rev. A 59, 569 (1999) and Phys. Rev. A 98, 043407 (2018)], where the latter rate has been derived using quantum mechanics, have been implemented in the particle-in-cell code SMILEI [Comput. Phys. Commun. 222, 351 (2018)]. A series of one- and two-dimensional simulations are compared and shown to reproduce the charge states without presenting visible differences when increasing the simulation dimensionality. They provide a way to accurately verify the intensity on target using in situ measurements.
More details from the publisher
Details from ORA
More details
More details

Pathways towards break-even for low convergence ratio direct-drive ICF

Journal of Plasma Physics Cambridge University Press 88:3 (2022) 905880314

Authors:

R Paddock, Heath Martin, Rusko Ruskov, Robbie Scott, Warren Garbett, Brian Haines, Alex Zylstra, Mike Campbell, Tim Collins, Steven Craxton, Ca Thomas, Valeri Goncharov, Ramy Aboushelbaya, Qingsong Feng, Marko von der LEYEN, Iustin Ouatu, Benjamin Spiers, Robin Timmis, Robin Wang, Peter Norreys

Abstract:

Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 kJ and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of 1D-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break-even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.
More details from the publisher
Details from ORA

Pathways towards break even for low convergence ratio direct-drive inertial confinement fusion

Journal of Plasma Physics Cambridge University Press 88:3 (2022) 905880314

Authors:

Rw Paddock, H Martin, Rt Ruskov, Rhh Scott, W Garbett, Bm Haines, Ab Zylstra, Em Campbell, Tjb Collins, Rs Craxton, Ca Thomas, Vn Goncharov, R Aboushelbaya, Qs Feng, Mw von der Leyen, I Ouatu, Bt Spiers, R Timmis, Rhw Wang, Pa Norreys

Abstract:

Following indirect-drive experiments which demonstrated promising performance for low convergence ratios (below 17), previous direct-drive simulations identified a fusion-relevant regime which is expected to be robust to hydrodynamic instability growth. This paper expands these results with simulated implosions at lower energies of 100 and 270 kJ, and ‘hydrodynamic equivalent’ capsules which demonstrate comparable convergence ratio, implosion velocity and in-flight aspect ratio without the need for cryogenic cooling, which would allow the assumptions of one-dimensional-like performance to be tested on current facilities. A range of techniques to improve performance within this regime are then investigated, including the use of two-colour and deep ultraviolet laser pulses. Finally, further simulations demonstrate that the deposition of electron energy into the hotspot of a low convergence ratio implosion through auxiliary heating also leads to significant increases in yield. Results include break even for 1.1 MJ of total energy input (including an estimated 370 kJ of short-pulse laser energy to produce electron beams for the auxiliary heating), but are found to be highly dependent upon the efficiency with which electron beams can be created and transported to the hotspot to drive the heating mechanism.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet