Measuring the orbital angular momentum of high-power laser pulses
Physics of Plasmas AIP Publishing 27:5 (2020) 053107
Abstract:
In this article, we showcase the experimental results of methods to produce and characterize orbital angular momentum (OAM) carrying high-power lasers. The OAM pulses were produced on the ASTRA laser of the Central Laser Facility using a continuous spiral phase plate. Three different characterization methods were then used to measure the OAM content of the beam. The methods that were used were a cylindrical lens diagnostic, an interferometric diagnostic, and a projective diagnostic. We further discuss the relative advantages and disadvantages of each method in the context of high-power laser experiments.Wakefields in a cluster plasma
Physical Review Special Topics: Accelerators and Beams American Physical Society 22:11 (2019) 113501
Abstract:
We report the first comprehensive study of large amplitude Langmuir waves in a plasma of nanometer-scale clusters. Using an oblique angle single-shot frequency domain holography diagnostic, the shape of these wakefields is captured for the first time. The wavefronts are observed to curve backwards, in contrast to the forwards curvature of wakefields in uniform plasma. Due to the expansion of the clusters, the first wakefield period is longer than those trailing it. The features of the data are well described by fully relativistic two-dimensional particle-in-cell simulations and by a quasianalytic solution for a one-dimensional, nonlinear wakefield in a cluster plasma.Orbital angular momentum coupling in elastic photon-photon scattering
Physical Review Letters American Physical Society 123:11 (2019) 113604
Abstract:
In this Letter, we investigate the effect of orbital angular momentum (OAM) on elastic photon-photon scattering in a vacuum for the first time. We define exact solutions to the vacuum electromagnetic wave equation which carry OAM. Using those, the expected coupling between three initial waves is derived in the framework of an effective field theory based on the Euler-Heisenberg Lagrangian and shows that OAM adds a signature to the generated photons thereby greatly improving the signal-to-noise ratio. This forms the basis for a proposed high-power laser experiment utilizing quantum optics techniques to filter the generated photons based on their OAM state.Kinetic simulations of fusion ignition with hot-spot ablator mix
(2019)
Suprathermal Electrons from the Anti-Stokes Langmuir Decay Instability Cascade
(2019)