Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Fast electron energy transport in solid density and compressed plasma

Nuclear Fusion IOP Publishing 54:5 (2014) 054004

Authors:

P Norreys, D Batani, S Baton, FN Beg, R Kodama, PM Nilson, P Patel, F Pérez, JJ Santos, RHH Scott, VT Tikhonchuk, M Wei, J Zhang
More details from the publisher

Compact laser accelerators for X-ray phase-contrast imaging

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372:2010 (2014)

Authors:

Z Najmudin, S Kneip, MS Bloom, SPD Mangles, O Chekhlov, AE Dangor, A Dopp, K Ertel, SJ Hawkes, J Holloway, CJ Hooker, J Jiang, NC Lopes, H Nakamura, PA Norreys, PP Rajeev, C Russo, MJV Streeter, DR Symes, M Wing

Abstract:

Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300TW laser, which allowed the energy of the synchrotron source to be extended to the 10100 keV range. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
More details from the publisher
More details

Plasma wakefields driven by intense, broadband, incoherent electromagnetic radiation

(2014)

Authors:

RMGM Trines, LO Silva, JT Mendonça, WB Mori, PA Norreys, R Bingham
More details from the publisher

High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

Applied Physics Letters AIP Publishing 104:8 (2014) 081123

Authors:

CM Brenner, APL Robinson, K Markey, RHH Scott, RJ Gray, M Rosinski, O Deppert, J Badziak, D Batani, JR Davies, SM Hassan, KL Lancaster, K Li, IO Musgrave, PA Norreys, J Pasley, M Roth, H-P Schlenvoigt, C Spindloe, M Tatarakis, T Winstone, J Wolowski, D Wyatt, P McKenna, D Neely
More details from the publisher

Laminar shocks in high power laser plasma interactions

(2014)

Authors:

RA Cairns, R Bingham, P Norreys, R Trines
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet