Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Impact of extended preplasma on energy coupling in kilojoule energy relativistic laser interaction with cone wire targets relevant to fast ignition

New Journal of Physics 15 (2013)

Authors:

T Yabuuchi, R Mishra, C McGuffey, B Qiao, MS Wei, H Sawada, Y Sentoku, T Ma, DP Higginson, KU Akli, D Batani, H Chen, LA Gizzi, MH Key, AJ MacKinnon, HS McLean, PA Norreys, PK Patel, RB Stephens, Y Ping, W Theobald, C Stoeckl, FN Beg

Abstract:

Cone-guided fast ignition laser fusion depends critically on details of the interaction of an intense laser pulse with the inside tip of a cone. Generation of relativistic electrons in the laser plasma interaction (LPI) with a gold cone and their subsequent transport into a copper wire have been studied using a kJ-class intense laser pulse, OMEGA EP (850 J, 10 ps). Weobserved that the laser-pulse-energy-normalized copper K signal from the Cu wire attached to the Au cone is significantly reduced (by a factor of 5) as compared to that from identical targets using the Titan laser (150 J, 0.7 ps) with 60 × less energy in the prepulse. We conclude that the decreased coupling is due to increased prepulse energy rather than 10 ps pulse duration, for which this effect has not been previously explored. The collisional particle-in-cell code PICLS demonstrates that the preformed plasma has a significant impact on generation of electrons and their transport. In particular, a longer scale length preplasma significantly reduces the energy coupling from the intense laser to the wire due to the larger offset distance between the relativistic critical density surface and the cone tip as well as a wider divergence of source electrons. We also observed that laser-driven plasma ionization increase in the LPI region can potentially alter the electron density profile during the laser interaction, forcing the electron source to be moved farther away from the cone tip which contributes to the reduction of energy coupling. © IOP Publishing and Deutsche Physikalische Gesellschaft.
More details from the publisher

Laminar shocks in high power laser interactions

40th EPS Conference on Plasma Physics, EPS 2013 2 (2013) 850-853

Authors:

RA Cairns, R Bingham, PA Norreys, RMGM Trines

The effect of phase front deformation on the growth of the filamentation instability in laser-plasma interactions

New Journal of Physics 15 (2013)

Authors:

E Higson, R Trines, J Jiang, R Bingham, KL Lancaster, JR Davies, PA Norreys

Abstract:

Laser pulses of 0.9 kJ/1 ns/1053 nm were focused onto low-Z plastic targets in both spherical and planar geometry. The uniformity of the resulting plasma production was studied using x-ray pinhole imaging. Evidence is provided suggesting that thermal filamentation starts to occur for irradiances on the target of Iλ2 1014 W cm-2 μm 2, even on deployment of phase plates to improve the focal spot spatial uniformity. The experiments are supported by both analytical modelling and two-dimensional particle-in-cell simulations. The implications for the applications of laser-plasma interactions that require high degrees of uniform irradiation are discussed. © IOP Publishing and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

(2012)

Authors:

RHH Scott, DS Clark, DK Bradley, DA Callahan, MJ Edwards, SW Haan, OS Jones, BK Spears, MM Marinak, RPJ Town, PA Norreys, LJ Suter
More details from the publisher

Employing laser-accelerated proton beams to diagnose high intensity laser-plasma interactions

AIP Conference Proceedings 1462 (2012) 149-154

Authors:

G Sarri, CA Cecchetti, K Quinn, PA Norreys, R Trines, O Willi, J Fuchs, P McKenna, M Quinn, F Pegoraro, SV Bulanov, M Borghesi

Abstract:

A review of the proton radiography technique will be presented. This technique employs laser-accelerated laminar bunches of protons to diagnose the temporal and spatial characteristic of the electric and magnetic fields generated during high-intensity laser-plasma interactions. The remarkable temporal and spatial resolution that this technique can achieve (of the order of a picosecond and a few microns respectively) candidates this technique as the preferrable one, if compared to other techniques, to probe high intensity laser-matterinteractions. © 2012 American Institute of Physics.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet