Producing bright X-rays for imaging applications using a laser wakefield accelerator
Conference on Lasers and Electro-Optics Europe - Technical Digest 2014-January (2014)
Abstract:
We report on the generation of bright multi-keV betatron X-ray radiation using a GeV laser wakefield accelerator and investigate the use of these X-rays for various imaging applications.Producing bright X-rays for imaging applications using a laser wakefield accelerator
Optics InfoBase Conference Papers (2014)
Abstract:
We report on the generation of bright multi-keV betatron X-ray radiation using a GeV laser wakefield accelerator and investigate the use of these X-rays for various imaging applications. © 2014 Optical Society of America.Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers
EPJ Web of Conferences 59 (2013)
Abstract:
The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays) and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n) reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10-20% assuming a uniform temperature rise model. © Owned by the authors, published by EDP Sciences, 2013.The role of collisions on mode competition between the two-stream and Weibel instabilities
Journal of Plasma Physics 79:6 (2013) 987-989
Abstract:
We present results from numerical simulations conducted to investigate a potential method for realizing the required fusion fuel heating in the fast ignition scheme to achieving inertial confinement fusion. A comparison will be made between collisionless and collisional particle-in-cell simulations of the relaxation of a non-thermal electron beam through the two-stream instability. The results presented demonstrate energy transfer to the plasma ion population from the laser-driven electron beam via the nonlinear wave-wave interaction associated with the two-stream instability. Evidence will also be provided for the effects of preferential damping of competing instabilities such as the Weibel mode found to be detrimental to the ion heating process. © Cambridge University Press 2013.A robust plasma-based laser amplifier via stimulated Brillouin scattering
(2013)