Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

New Journal of Physics 15 (2013)

Authors:

RHH Scott, F Pérez, MJV Streeter, EL Clark, JR Davies, HP Schlenvoigt, JJ Santos, S Hulin, KL Lancaster, F Dorchies, C Fourment, B Vauzour, AA Soloviev, SD Baton, SJ Rose, PA Norreys

Abstract:

Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2. © IOP Publishing and Deutsche Physikalische Gesellschaft.
More details from the publisher
More details

Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors.

Rev Sci Instrum 84:8 (2013) 083505

Authors:

RHH Scott, EL Clark, F Pérez, MJV Streeter, JR Davies, H-P Schlenvoigt, JJ Santos, S Hulin, KL Lancaster, SD Baton, SJ Rose, PA Norreys

Abstract:

A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.
More details from the publisher
More details

Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

(2013)

Authors:

RHH Scott, EL Clark, F Perez, MJV Streeter, JR Davies, H-P Schlenvoigt, JJ Santos, S Hulin, KL Lancaster, SD Baton, SJ Rose, PA Norreys
More details from the publisher

Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries

Physical Review Letters 110:7 (2013)

Authors:

RHH Scott, DS Clark, DK Bradley, DA Callahan, MJ Edwards, SW Haan, OS Jones, BK Spears, MM Marinak, RPJ Town, PA Norreys, LJ Suter

Abstract:

The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF), to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P4 shapes may be unquantifiable for DT layered capsules. Instead the positive P4 asymmetry "aliases" itself as an oblate P2 in the x-ray images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations. © 2013 American Physical Society.
More details from the publisher
More details
More details

Surface waves and electron acceleration from high-power, kilojoule-class laser interactions with underdense plasma

New Journal of Physics 15 (2013)

Authors:

L Willingale, AGR Thomas, PM Nilson, H Chen, J Cobble, RS Craxton, A Maksimchuk, PA Norreys, TC Sangster, RHH Scott, C Stoeckl, C Zulick, K Krushelnick

Abstract:

Experiments were performed on the Omega EP laser facility to study laser pulse propagation, channeling phenomena and electron acceleration from high-intensity, high-power laser interactions with underdense plasma. A CH plasma plume was used as the underdense target and the interaction of the laser pulse channeling through the plasma was imaged using proton radiography. High-energy electron spectra were measured for different experimental laser parameters. Structures observed along the channel walls are interpreted as having developed from surface waves, which are likely to serve as an injection mechanism of electrons into the cavitated channel for acceleration via direct laser acceleration mechanisms. Two-dimensional particle-in-cell simulations give good agreement with these channeling and electron acceleration phenomena. © IOP Publishing and Deutsche Physikalische Gesellschaft.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet