Laser-driven particle acceleration
Nature Photonics 3:8 (2009) 423-425
A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies.
The Review of scientific instruments 80:8 (2009) 083501
Abstract:
A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the approximately 1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10(20) W/cm(2). The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of approximately 10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He(alpha) and Ly(alpha) resonance lines were approximately 1.8 and approximately 1.0 mJ/eV sr (approximately 0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.Measurements of fast electron scaling generated by petawatt laser systems
Physics of Plasmas 16:6 (2009)
Abstract:
Fast electron energy spectra have been measured for a range of intensities between 1018 and 1021 W cm-2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40° in p -polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions. © 2009 American Institute of Physics.Experimental investigation of fast electron transport through Kα imaging and spectroscopy in relativistic laser-solid interactions
Plasma Physics and Controlled Fusion 51:1 (2009)
Abstract:
We report on experimental fast electron transport studies performed in the relativistic laser intensity interaction regime. The investigation has been carried out in the long-pulse (0.6 ps) regime relevant for the fast ignitor scheme in the inertial confinement fusion concept. Multilayer targets containing different materials were irradiated. Here we show the results concerning SiO2 or Al layers, respectively. The Kα radiation from a Cu tracer layer on the target rear side was found to be enhanced by a factor of about 8 with the irradiation of SiO2 targets with respect to the Al targets. The possible origin of this observation is discussed. © 2009 IOP Publishing Ltd.International workshop on the fast ignition of fusion targets
Plasma Physics and Controlled Fusion 51:1 (2009)