Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Mechanisms of electron injection into laser wakefields by a weak counter-propagating pulse

European Physical Journal: Special Topics 175:1 (2009) 49-55

Authors:

ZM Sheng, WM Wang, R Trines, P Norreys, M Chen, J Zhang

Abstract:

Numerical studies are conducted on the electron injection into the first acceleration bucket of a laser wakefield by a weak counter-propagating laser pulse. It is shown that there are two injection mechanisms involved during the colliding laser interaction, the collective injection and stochastic injection. They are caused by the time-averaged ponderomotive force push and stochastic acceleration in the interfering fields, respectively. The threshold amplitude of the injection laser pulse is estimated for the occurrence of electron injection, which is close to that for stochastic acceleration and depends weakly upon the plasma density. The trapping of a large number of injection electrons can result in significant decay of the laser wakefield behind the first wave bucket. © EDP Sciences and Springer 2009.
More details from the publisher

High brightness keV harmonics from relativistically oscillating plasma surfaces

European Physical Journal: Special Topics 175:1 (2009) 57-60

Authors:

B Dromey, D Adams, S Kar, C Bellei, DC Carroll, RJ Clarke, JS Green, S Kneip, K Markey, SR Nagel, PT Simpson, L Willingale, P McKenna, D Neely, Z Najmudin, K Krushelnick, PA Norreys, M Zepf

Abstract:

X-ray harmonic radiation extending to 3.3 Å, 3.8 keV from Petawatt class laser-solid interactions is presented. The harmonic spectra display a relativistic limit scaling up to ∼3000th order, above which an intensity dependent scaling roll-over is observed. Highly directional beamed emission for harmonic photon energy hv > 1 keV is found to be into a cone angle < 4°, significantly less than that of the incident laser cone (20°). © EDP Sciences and Springer 2009.
More details from the publisher

A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

Review of Scientific Instruments AIP Publishing 80:8 (2009) 083501

Authors:

W Theobald, C Stoeckl, PA Jaanimagi, PM Nilson, M Storm, DD Meyerhofer, TC Sangster, D Hey, AJ MacKinnon, H-S Park, PK Patel, R Shepherd, RA Snavely, MH Key, JA King, B Zhang, RB Stephens, KU Akli, K Highbarger, RL Daskalova, L Van Woerkom, RR Freeman, JS Green, G Gregori, K Lancaster, PA Norreys
More details from the publisher
More details

Laser-driven particle acceleration

Nature Photonics 3:8 (2009) 423-425
More details from the publisher

Measurements of fast electron scaling generated by petawatt laser systems

Physics of Plasmas 16:6 (2009)

Authors:

T Tanimoto, H Habara, R Kodama, M Nakatsutsumi, KA Tanaka, KL Lancaster, JS Green, RHH Scott, M Sherlock, PA Norreys, RG Evans, MG Haines, S Kar, M Zepf, J King, T Ma, MS Wei, T Yabuuchi, FN Beg, MH Key, P Nilson, RB Stephens, H Azechi, K Nagai, T Norimatsu, K Takeda, J Valente, JR Davies

Abstract:

Fast electron energy spectra have been measured for a range of intensities between 1018 and 1021 W cm-2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40° in p -polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions. © 2009 American Institute of Physics.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet