Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Laser-driven particle acceleration

Nature Photonics 3:8 (2009) 423-425
More details from the publisher

A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies.

The Review of scientific instruments 80:8 (2009) 083501

Authors:

W Theobald, C Stoeckl, PA Jaanimagi, PM Nilson, M Storm, DD Meyerhofer, TC Sangster, D Hey, AJ MacKinnon, H-S Park, PK Patel, R Shepherd, RA Snavely, MH Key, JA King, B Zhang, RB Stephens, KU Akli, K Highbarger, RL Daskalova, L Van Woerkom, RR Freeman, JS Green, G Gregori, K Lancaster, PA Norreys

Abstract:

A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the approximately 1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10(20) W/cm(2). The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of approximately 10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He(alpha) and Ly(alpha) resonance lines were approximately 1.8 and approximately 1.0 mJ/eV sr (approximately 0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation.
More details from the publisher
More details
More details

Measurements of fast electron scaling generated by petawatt laser systems

Physics of Plasmas 16:6 (2009)

Authors:

T Tanimoto, H Habara, R Kodama, M Nakatsutsumi, KA Tanaka, KL Lancaster, JS Green, RHH Scott, M Sherlock, PA Norreys, RG Evans, MG Haines, S Kar, M Zepf, J King, T Ma, MS Wei, T Yabuuchi, FN Beg, MH Key, P Nilson, RB Stephens, H Azechi, K Nagai, T Norimatsu, K Takeda, J Valente, JR Davies

Abstract:

Fast electron energy spectra have been measured for a range of intensities between 1018 and 1021 W cm-2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on petawatt laser facilities at the Rutherford Appleton Laboratory and Osaka University, where the pulse duration was varied from 0.5 to 5 ps relevant to upcoming fast ignition integral experiments. The incident angle was also changed from normal incidence to 40° in p -polarized. The results confirm a reduction from the ponderomotive potential energy on fast electrons at the higher intensities under the wide range of different irradiation conditions. © 2009 American Institute of Physics.
More details from the publisher

Experimental investigation of fast electron transport through Kα imaging and spectroscopy in relativistic laser-solid interactions

Plasma Physics and Controlled Fusion 51:1 (2009)

Authors:

P Köster, K Akli, D Batani, S Baton, RG Evans, A Giulietti, D Giulietti, LA Gizzi, JS Green, M Koenig, L Labate, A Morace, P Norreys, F Perez, J Waugh, N Woolsey, KL Lancaster

Abstract:

We report on experimental fast electron transport studies performed in the relativistic laser intensity interaction regime. The investigation has been carried out in the long-pulse (0.6 ps) regime relevant for the fast ignitor scheme in the inertial confinement fusion concept. Multilayer targets containing different materials were irradiated. Here we show the results concerning SiO2 or Al layers, respectively. The Kα radiation from a Cu tracer layer on the target rear side was found to be enhanced by a factor of about 8 with the irradiation of SiO2 targets with respect to the Al targets. The possible origin of this observation is discussed. © 2009 IOP Publishing Ltd.
More details from the publisher

International workshop on the fast ignition of fusion targets

Plasma Physics and Controlled Fusion 51:1 (2009)
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet