Photon acceleration and modulational instability during wakefield excitation using long laser pulses
Plasma Physics and Controlled Fusion 51:2 (2009)
Abstract:
The modulational instability that occurs during the interaction of a long laser pulse and its own wakefield in an underdense plasma has been studied experimentally and theoretically. Recent experiments using laser pulses that are several times longer than the wakefield period have yielded transmission spectra that exhibit a series of secondary peaks flanking the main laser peak. These peaks are too closely spaced to be the result of Raman instabilities; their origin was found to be photon acceleration of the laser's photons in the wakefield instead. In the experiments described in this paper, a laser pulse of 50-200 fs containing 300-600 mJ was focused on the edge of a helium gas jet on a 25 νm focal spot. The observed transmission spectra show evidence of both ionization blueshift and modulation by the pulse's wakefield. The transmission spectra have also been modelled using a dedicated photon-kinetic numerical code. The modelling has revealed a direct correlation between the spectral modulations and the amplitude of the excited wakefield. By comparing the measured and simulating spectra, the origin of various spectral characteristics has been explained in terms of photon acceleration. The feasibility of using this effect as a wakefield diagnostic will be discussed. © 2009 IOP Publishing Ltd.Ultrashort pulse filamentation and monoenergetic electron beam production in LWFAs
Plasma Physics and Controlled Fusion 51:2 (2009)
Abstract:
In the experiments reported here, the filamentation of ultrashort laser pulses, due to non-optimal choice of focusing geometry and/or electron number density, has a severely deleterious effect on monoenergetic electron beam production in laser wakefield accelerators. Interactions with relatively small focal spots, w0 < λp/2, and with pulse length cτ ≈ λp, incur fragmentation into a large number of low power filaments. These filaments are modulated with a density dependent size of, on average, close to λp. The break-up of the driving pulse results in shorter interaction lengths, compared with larger focal spots, and broad energy-spread electron beams, which are not useful for applications. Filamentation of the pulse occurs because the strongly dynamic focusing (small f-number) of the laser prevents pulse length compression before reaching its minimum spot-size, which results in non-spherical focusing gradients. © 2009 IOP Publishing Ltd.Applications of the wave kinetic approach: From laser wakefields to drift wave turbulence
Physics of Plasmas 16:5 (2009)
Abstract:
Nonlinear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves or as a random phase wave coupling to other random phase waves. An alternative approach involves a random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasiparticles. This approach has been applied to both photon acceleration in laser wakefields and drift wave turbulence in magnetized plasma edge configurations. Numerical simulations have been compared to experiments, varying from photon acceleration to drift mode-zonal flow turbulence, and good qualitative correspondences have been found in all cases. © 2009 American Institute of Physics.Temperature profiles derived from transverse optical shadowgraphy in ultraintense laser plasma interactions at 6 × 1020 W cm? 2
Physics of Plasmas 16:5 (2009)
Abstract:
A variety of targets with different dimensions and materials was irradiated using the VULCAN PW laser [C. N. Danson, Nucl. Fusion 44, S239 (2004)]. Using transverse optical shadowgraphy in conjunction with a one-dimensional radiation hydrodynamics code it was possible to determine a longitudinal temperature gradient. It was demonstrated for thick targets with a low Z substrate and a thin higher Z tracer layer at the rear that the boundary between the two materials was Rayleigh-Taylor unstable. By including a simple bubble growth model into the calculations it was possible to correct for the associated behavior with regard to temperature. The resulting temperature gradient was in good agreement with the previously published data using two different methods of determining the temperature. © 2009 American Institute of Physics.Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions
Laser and Particle Beams 27:2 (2009) 243-248