Advanced-ignition-concept exploration on OMEGA
Plasma Physics and Controlled Fusion 51:12 (2009)
Abstract:
Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40 νm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1 × 1016 W cm-2) for shock generation. © 2009 IOP Publishing Ltd.The 10 PW OPCPA Vulcan Laser Upgrade
CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009)
Effect of reentrant cone geometry on energy transport in intense laser-plasma interactions
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80:4 (2009)
Abstract:
The energy transport in cone-guided low- Z targets has been studied for laser intensities on target of 2.5× 1020 W cm-2. Extreme ultraviolet (XUV) imaging and transverse optical shadowgraphy of the rear surfaces of slab and cone-slab targets show that the cone geometry strongly influences the observed transport patterns. The XUV intensity showed an average spot size of 65±10 μm for slab targets. The cone slabs showed a reduced spot size of 44±10 μm. The shadowgraphy for the aforementioned shots demonstrate the same behavior. The transverse size of the expansion pattern was 357±32 μm for the slabs and reduced to 210±30 μm. A transport model was constructed which showed that the change in transport pattern is due to suppression of refluxing electrons in the material surrounding the cone. © 2009 The American Physical Society.Evidence of anomalous resistivity for hot electron propagation through a dense fusion core in fast ignition experiments
New Journal of Physics 11 (2009)
Abstract:
Anomalous resistivity for hot electrons passing through a dense core plasma is studied for fast ignition laser fusion. The hot electrons generated via the ultra-intense laser pulse and guiding cone interactions are measured after they pass through a dense plasma with a density of 50-100 g cm-3 in a radius of 15-25 m. When significant neutron enhancements are achieved by the ultraintense laser pulse injection, the energy reduction of fast electrons is observed. Also, a reduction in the number of electrons with energy up to 15 MeV can be seen. We offer a new physical mechanism for the stopping of electrons, involving electron magnetohydrodynamic shock formation in the inhomogeneous plasma density region. The dissipation in the shock region can explain electron stopping with energies of the order of 15 MeV. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.Recent fast electron energy transport experiments relevant to fast ignition inertial fusion
Nuclear Fusion 49:10 (2009)