Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

The 10 PW OPCPA Vulcan Laser Upgrade

CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009)

Authors:

O Chekhlov, J Collier, RJ Clark, C Hernandez-Gomez, A Lyachev, P Matousek, IO Musgrave, D Neely, PA Norreys, I Ross, Y Tang, TB Winstone, BE Wyborn
More details from the publisher

Effect of reentrant cone geometry on energy transport in intense laser-plasma interactions

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 80:4 (2009)

Authors:

KL Lancaster, M Sherlock, JS Green, CD Gregory, P Hakel, KU Akli, FN Beg, SN Chen, RR Freeman, H Habara, R Heathcote, DS Hey, K Highbarger, MH Key, R Kodama, K Krushelnick, H Nakamura, M Nakatsutsumi, J Pasley, RB Stephens, M Storm, M Tampo, W Theobald, L Van Woerkom, RL Weber, MS Wei, NC Woolsey, T Yabuuchi, PA Norreys

Abstract:

The energy transport in cone-guided low- Z targets has been studied for laser intensities on target of 2.5× 1020 W cm-2. Extreme ultraviolet (XUV) imaging and transverse optical shadowgraphy of the rear surfaces of slab and cone-slab targets show that the cone geometry strongly influences the observed transport patterns. The XUV intensity showed an average spot size of 65±10 μm for slab targets. The cone slabs showed a reduced spot size of 44±10 μm. The shadowgraphy for the aforementioned shots demonstrate the same behavior. The transverse size of the expansion pattern was 357±32 μm for the slabs and reduced to 210±30 μm. A transport model was constructed which showed that the change in transport pattern is due to suppression of refluxing electrons in the material surrounding the cone. © 2009 The American Physical Society.
More details from the publisher
More details

Evidence of anomalous resistivity for hot electron propagation through a dense fusion core in fast ignition experiments

New Journal of Physics 11 (2009)

Authors:

T Yabuuchi, A Das, GR Kumar, H Habara, PK Kaw, R Kodarna, K Mima, PA Norreys, S Sengupta, KA Tanaka

Abstract:

Anomalous resistivity for hot electrons passing through a dense core plasma is studied for fast ignition laser fusion. The hot electrons generated via the ultra-intense laser pulse and guiding cone interactions are measured after they pass through a dense plasma with a density of 50-100 g cm-3 in a radius of 15-25 m. When significant neutron enhancements are achieved by the ultraintense laser pulse injection, the energy reduction of fast electrons is observed. Also, a reduction in the number of electrons with energy up to 15 MeV can be seen. We offer a new physical mechanism for the stopping of electrons, involving electron magnetohydrodynamic shock formation in the inhomogeneous plasma density region. The dissipation in the shock region can explain electron stopping with energies of the order of 15 MeV. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher

Recent fast electron energy transport experiments relevant to fast ignition inertial fusion

Nuclear Fusion 49:10 (2009)

Authors:

PA Norreys, RHH Scott, KL Lancaster, JS Green, APL Robinson, M Sherlock, RG Evans, MG Haines, S Kar, M Zepf, MH Key, J King, T Ma, T Yabuuchi, MS Wei, FN Beg, P Nilson, W Theobald, RB Stephens, J Valente, JR Davies, K Takeda, H Azechi, M Nakatsutsumi, T Tanimoto, R Kodama, KA Tanaka

Abstract:

A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 1021 W cm-2. A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model. © 2009 IAEA, Vienna.
More details from the publisher

A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

Review of Scientific Instruments 80:8 (2009)

Authors:

W Theobald, C Stoeckl, PA Jaanimagi, PM Nilson, M Storm, DD Meyerhofer, TC Sangster, D Hey, AJ MacKinnon, HS Park, PK Patel, R Shepherd, RA Snavely, MH Key, JA King, B Zhang, RB Stephens, KU Akli, K Highbarger, RL Daskalova, L Van Woerkom, RR Freeman, JS Green, G Gregori, K Lancaster, PA Norreys

Abstract:

A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the ∼1.5 to 2 keV range (6.2-8.2 Å wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4× 10 20 W/ cm 2. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of ∼10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He α and Ly α resonance lines were ∼1.8 and ∼1.0 mJ/eV sr (∼0.4 and 0.25 J/Å sr), respectively, for 220 J, 10 ps laser irradiation. © 2009 American Institute of Physics.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet