Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Magnetic collimation of petawatt driven fast electron beam for prospective fast ignition studies

Journal of Physics: Conference Series 244:PART 2 (2010)

Authors:

S Kar, D Adams, M Borghesi, K Markey, B Ramakrishna, M Zepf, K Lancaster, P Norreys, APL Robinson, DC Carroll, P McKenna, M Quinn, X Yuan, C Bellei, J Schreiber

Abstract:

Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations. © 2010 IOP Publishing Ltd.
More details from the publisher

Measurement of fast electrons spectra generated by interaction between solid target and peta watt laser

Journal of Physics: Conference Series 244:PART 2 (2010)

Authors:

T Tanimoto, H Habara, KA Tanaka, R Kodama, M Nakatsutsumi, KL Lancaster, JS Green, RHH Scott, M Sherlock, PA Norreys, RG Evans, MG Haines, S Kar, M Zepf, J King, T Ma, MS Wei, T Yabuuchi, FN Beg, MH Key, P Nilson, RB Stephens, H Azechi, K Nagai, T Norimatsu, K Takeda, J Valente, JR Davies

Abstract:

Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm-2 and 1021 Wcm-2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm-2. © 2010 IOP Publishing Ltd.
More details from the publisher

The Vulcan 10 PW project

Journal of Physics: Conference Series 244:PART 3 (2010)

Authors:

C Hernandez-Gomez, SP Blake, O Chekhlov, RJ Clarke, AM Dunne, M Galimberti, S Hancock, R Heathcote, P Holligan, A Lyachev, P Matousek, IO Musgrave, D Neely, PA Norreys, I Ross, Y Tang, TB Winstone, BE Wyborn, J Collier

Abstract:

The aim of this project is to establish a 10 PW facility on the Vulcan laser system capable of being focussed to intensities of at least 10 23 Wcm-2 and integrate this into a flexible and unique user facility This paper will present progress made in Phase one developing the 10PW Front End as well as the concept for the new Vulcan 10 PW facility. The new facility will be configured in a unique way to maximise the scientific opportunities presented through a combination with the existing capabilities already established on Vulcan. This ground breaking development will open up a range of new scientific opportunities. © 2010 IOP Publishing Ltd.
More details from the publisher
More details

Transport of energy by ultraintense laser-generated electrons in nail-wire targets

Physics of Plasmas 16:11 (2009) 112702

Authors:

T Ma, MH Key, RJ Mason, KU Akli, RL Daskalova, RR Freeman, JS Green, K Highbarger, PA Jaanimagi, JA King, KL Lancaster, SP Hatchett, AJ MacKinnon, AG MacPhee, PA Norreys, PK Patel, RB Stephens, W Theobald, LD Van Woerkom, MS Wei, SC Wilks, FN Beg

Abstract:

Nail-wire targets (20 μm diameter copper wires with 80 μm hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2 × 1020 W · cm-2 Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu Kα measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 μm 1/e decay length due to resistive inhibition. The coupling efficiency to the wire was 3.3 ± 1.7% with an average hot electron temperature of 620 ± 125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport. © 2009 American Institute of Physics.
More details from the publisher

Laser particle acceleration

Optics InfoBase Conference Papers (2009)

Authors:

PA Norreys, APL Robinson, RMGM Trines

Abstract:

The production of highly energetic beams of both electrons and ions is a major part of the experimental programme at the Central Laser Facility (CLF), STFC Rutherford Appleton Laboratory. Every year sees a significant number of experiments done in both areas. This has been complemented by theoretical studies that have been carried out at the CLF and UK universities. In a recent consultation on plans to build a 10 PW upgrade to the VULCAN facility, laser-driven particle acceleration formed a very significant part of the science case that emerged from this consultation. In this talk, I will review the experimental progress that has been made in particle acceleration, and I will also examine what theoretical investigations suggest the future of this field will be. Experimental studies of laser-driven ion acceleration of the CLF using both the VULCAN and ASTRA systems have looked at a number of aspects including focussing and control of the ion beam, manipulation of the energy spectrum, energy scaling with laser and target parameters, and direct use of the proton beam in both isochoric heating of secondary targets and proton radiography. Recently there has been great interest in a number of theoretical studies which indicate that it should be possible to explore radiation-pressure driven ion acceleration for intensities above 1021 Wcm-2, which will be accessible with the ASTRA-GEMINI system. This very exciting prospect will also be discussed. Electron acceleration in laser wakefields is also a well established part of the CLF programme. Experimental studies of laser-driven electron acceleration using the ASTRA laser have explored electron acceleration in both supersonic gas jets and gas-filled capillaries. This has led to the production of electron bunches with up to 1 GeV energy and a few percent energy spread. The influence of tuneable parameters such as the evolution of the plasma channel inside a capillary or the position of the laser focus with respect to the gas jet is actively being investigated. These efforts are backed up by a matching numerical campaign. Recent experiments have also shown that electron bunches trapped on a downward density ramp can have a very small absolute energy spread, and the potential consequences of these results will also be discussed. © 2011 Optical Society of America.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet