Magnetic collimation of petawatt driven fast electron beam for prospective fast ignition studies
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations. © 2010 IOP Publishing Ltd.Measurement of fast electrons spectra generated by interaction between solid target and peta watt laser
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm-2 and 1021 Wcm-2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm-2. © 2010 IOP Publishing Ltd.The Vulcan 10 PW project
Journal of Physics: Conference Series 244:PART 3 (2010)
Abstract:
The aim of this project is to establish a 10 PW facility on the Vulcan laser system capable of being focussed to intensities of at least 10 23 Wcm-2 and integrate this into a flexible and unique user facility This paper will present progress made in Phase one developing the 10PW Front End as well as the concept for the new Vulcan 10 PW facility. The new facility will be configured in a unique way to maximise the scientific opportunities presented through a combination with the existing capabilities already established on Vulcan. This ground breaking development will open up a range of new scientific opportunities. © 2010 IOP Publishing Ltd.Transport of energy by ultraintense laser-generated electrons in nail-wire targets
Physics of Plasmas 16:11 (2009) 112702
Abstract:
Nail-wire targets (20 μm diameter copper wires with 80 μm hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2 × 1020 W · cm-2 Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu Kα measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 μm 1/e decay length due to resistive inhibition. The coupling efficiency to the wire was 3.3 ± 1.7% with an average hot electron temperature of 620 ± 125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport. © 2009 American Institute of Physics.Laser particle acceleration
Optics InfoBase Conference Papers (2009)