Defining metrics of the Quasi-Biennial Oscillation in global climate models
Abstract:
Defining metrics of the Quasi-Biennial Oscillation in global climate models
Impacts of stratospheric sulfate geoengineering on global solar photovoltaic and concentrating solar power resource
Abstract:
In recent years, the idea of geoengineering, artificially modifying the climate to reduce global temperatures, has received increasing attention due to the lack of progress in reducing global greenhouse gas emissions. Stratospheric sulfate injection (SSI) is a geoengineering method proposed to reduce planetary warming by reflecting a proportion of solar radiation back into space that would otherwise warm the surface and lower atmosphere. We analyze results from the HadGEM2-CCS climate model with stratospheric emissions of 10 Tg yr-1 of SO2, designed to offset global temperature rise by around 1°C. A reduction in concentrating solar power (CSP) output of 5.9% on average over land is shown under SSI compared to a baseline future climate change scenario (RCP4.5) due to a decrease in direct radiation. Solar photovoltaic (PV) energy is generally less affected as it can use diffuse radiation, which increases under SSI, at the expense of direct radiation. Our results from HadGEM2-CCS are compared to the GEOSCCM chemistry-climate model from the Geoengineering Model Intercomparison Project (GeoMIP), with 5 Tg yr-1 emission of SO2. In many regions, the differences predicted in solar energy output between the SSI and RCP4.5 simulations are robust, as the sign of the changes for both the HadGEM2-CCS and GEOSCCM models agree. Furthermore, the sign of the total and direct annual mean radiation changes evaluated by HadGEM2-CCS agree with the sign of the multi-model mean changes of an ensemble of GeoMIP models over the majority of the world.Report on the SPARC QBO Workshop: The QBO and its Global Influence - Past, Present and Future
Abstract:
There is no known atmospheric phenomenon with a longer horizon of predictability than the quasibiennial oscillation (QBO) of tropical stratospheric circulation. With a mean period of about 28 months, the QBO phase can routinely be predicted at least a year in advance. This predictability arises from internal atmospheric dynamics, rather than from external forcings with long timescales, and it offers the tantalizing prospect of improved predictions for any phenomena influenced by the QBO. Observed QBO teleconnections include an apparent QBO influence on the stratospheric winter polar vortices in both hemispheres, the Madden-Julian Oscillation (MJO), and the North-Atlantic Oscillation (NAO). Yet the degree to which such teleconnections are real, robust, and sufficiently strong to provide useful predictive skill remains an important topic of research. Utilizing and understanding these linkages will require atmospheric models that adequately represent both the QBO and the mechanisms by which it influences other aspects of the general circulation, such as tropical deep convection.
The 2016 QBO workshop in Oxford aimed to explore these themes, and to build on the outcomes of the first QBO workshop, held in March 2015 in Victoria, BC, Canada (as reported in SPARC Newsletter No. 45). This earlier workshop was the kick-off meeting of the SPARC QBOi (QBO Initiative) activity, and its key outcome was to plan a series of coordinated Atmosphere General Circulation Model (AGCM) experiments (the “phase-one” QBOi experiments). These experiments provide a multi-model dataset that can be used to investigate the aforementioned themes. While the focus of the Victoria meeting was primarily on the QBO itself, the Oxford workshop has broadened the scope of the QBOi activity to encompass QBO impacts. Its primary outcome is a planned set of core papers analysing the phaseone QBOi experiments,