The Stratosphere and Its Role in Tropical Teleconnections
Eos 99 (2018)
Descent rate models of the synchronization of the Quasi-Biennial Oscillation by the annual cycle in tropical upwelling
Journal of the Atmospheric Sciences American Meteorological Society 75:7 (2018) 2281-2297
Abstract:
The response of the Quasi-Biennial Oscillation (QBO) to an imposed mean upwelling with a periodic modulation is studied, by modelling the dynamics of the zero wind line at the equator using a class of equations known as ‘descent rate’ models. These are simple mathematical models that capture the essence of QBO synchronization by focusing on the dynamics of the height of the zero wind line. A heuristic descent rate model for the zero wind line is described, and is shown to capture many of the synchronization features seen in previous studies of the QBO. Using a simple transformation, it is then demonstrated that the standard Holton-Lindzen model of the QBO can itself be put into the form of a descent rate model if a quadratic velocity profile is assumed below the zero wind line. The resulting non-autonomous ordinary differential equation captures much of the synchronization behaviour observed in the full Holton-Lindzen partial differential equation. The new class of models provides a novel framework within which to understand synchronization of the QBO, and we demonstrate a close relationship between these models and the circle map well-known in the mathematics literature. Finally, we analyse reanalysis datasets to validate some of the predictions of our descent rate models, and find statistically significant evidence for synchronization of the QBO that is consistent with model behaviour.Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi)
Geoscientific Model Development Copernicus Publications 11:3 (2018) 1009-1032
Abstract:
The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi) aims to improve the fidelity of tropical stratospheric variability in general circulation and Earth system models by conducting coordinated numerical experiments and analysis. In the equatorial stratosphere, the QBO is the most conspicuous mode of variability. Five coordinated experiments have therefore been designed to (i) evaluate and compare the verisimilitude of modelled QBOs under present-day conditions, (ii) identify robustness (or alternatively the spread and uncertainty) in the simulated QBO response to commonly imposed changes in model climate forcings (e.g. a doubling of CO2 amounts), and (iii) examine model dependence of QBO predictability. This paper documents these experiments and the recommended output diagnostics. The rationale behind the experimental design and choice of diagnostics is presented. To facilitate scientific interpretation of the results in other planned QBOi studies, consistent descriptions of the models performing each experiment set are given, with those aspects particularly relevant for simulating the QBO tabulated for easy comparison.Report on the Joint SPARC Dynamics and Observations Work- shop: SATIO-TCS, FISAPS and QBOi, Kyoto, Japan
SPARC (2018) 19-25
First successful hindcasts of the 2016 disruption of the stratospheric quasi-biennial oscillation
Geophysical Research Letters American Geophysical Union 45:3 (2018) 1602-1610