The effect of a well resolved stratosphere on surface climate: Differences between CMIP5 simulations with high and low top versions of the Met Office climate model
J. Clim. (2012)
Evidence for the chaotic origin of Northern Annular Mode variability
Geophysical Research Letters 38:15 (2011)
Abstract:
Exponential spectra are found to characterize variability of the Northern Annular Mode (NAM) for periods less than 36 days. This corresponds to the observed rounding of the autocorrelation function at lags of a few days. The characteristic persistence timescales during winter and summer is found to be ∼5 days for these high frequencies. Beyond periods of 36 days the characteristic decorrelation timescale is ∼20 days during winter and ∼6 days in summer. We conclude that the NAM cannot be described by autoregressive models for high frequencies; the spectra are more consistent with low-order chaos. We also propose that the NAM exhibits regime behaviour, however the nature of this has yet to be identified. Copyright 2011 by the American Geophysical Union.Stratosphere-resolving Models in CMIP5
Clivar Exchanges International CLIVAR Project Office 16 (2011) 2
Multimodel climate and variability of the stratosphere
Journal of Geophysical Research Atmospheres 116:5 (2011)
Abstract:
The stratospheric climate and variability from simulations of sixteen chemistry-climate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, "metrics" indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long-standing model problems, particularly related to the simulation of the SH and stratospheric variability. Copyright 2011 by the American Geophysical Union.The HadGEM2-ES implementation of CMIP5 centennial simulations
GEOSCIENTIFIC MODEL DEVELOPMENT 4:3 (2011) 543-570